
1

THE AUSTRA LANGUAGE

Ian Marteens

i

Contents
WELCOME TO AUSTRA 1

THE DESIGN OF THE LIBRARY 1
VECTORISATION VERSUS TASKS 1
LINEAR ALGEBRA 2
MATRIX FACTORISATIONS 3
TIME SERIES 3
MEAN-VARIANCE OPTIMISER 3
POLYNOMIALS AND ROOT FINDING 3
FAST FOURIER TRANSFORM 4
LANGUAGE GOALS AND DESIGN 4
ARRAYS IN AUSTRA 5

LANGUAGE OVERVIEW 7

LEXICAL SYNTAX 7
NUMERIC LITERALS 7
STRING LITERALS 8
DATE LITERALS 8
COMMENTS 8
ROOT OBJECTS 9
GLOBAL VARIABLES 9
SESSION VARIABLES 10
CLASS METHODS AND CLASS CONSTANTS 11

PRIMITIVE TYPES 13

OPERATORS 13
COMPARISONS 14
COMPLEX PROPERTIES AND OPERATORS 15
INTEGER PROPERTIES 15
THE MATH CLASS 15
DATES 19
LOGICAL VALUES 20
CONDITIONAL EXPRESSIONS 20

DEFINITIONS 23

CREATING DEFINITIONS 23
DEFINITIONS CANNOT USE SESSION VARIABLES 24
DEFINITIONS MAY USE EXISTING DEFINITIONS 24
DETERMINISTIC CALLS 24

THE AUSTRA LANGUAGE

ii

FUNCTION DEFINITIONS 25
DESCRIBING A FUNCTION DEFINITION 26
TYPE NAMES IN AUSTRA 26

LOCAL VARIABLES 29

LET CLAUSES 29
SCRIPT-SCOPED LET CLAUSES 29
LOCAL FUNCTION DEFINITIONS 30

LAMBDA FUNCTIONS 31

LAMBDA FUNCTIONS WITH ONE PARAMETER 31
FUNCTION NAMES AS LAMBDAS 32
LAMBDA FUNCTIONS WITH TWO PARAMETERS 32
BINARY OPERATORS AS LAMBDAS 33
CAPTURED VARIABLES 33
NESTED LAMBDAS 34

TIME SERIES 37

SERIES COME FROM EXTERNAL SOURCES 37
ADDITIONAL INFORMATION IN SERIES 37
SERIES VERSUS VECTORS 37
CLASS METHODS 38
SERIES PROPERTIES 38
SERIES METHODS 40
OPERATORS 41
INDEXING AND SLICING 41
LINEAR FITTING 41
LINEAR MODELS 43
STATISTICS ON TIME SERIES 44
ACCUMULATORS 44
MOVING TIME WINDOWS 45
AUTOCORRELATION AND PARTIAL AUTOCORRELATION 46
AUTOREGRESSIVE MODELS 47
MOVING AVERAGE MODELS 49

VECTORS 53

REAL VECTORS 53
CLASS METHODS 53
VECTOR PROPERTIES 55
VECTOR METHODS 56
VECTOR OPERATORS 57

THE AUSTRA LANGUAGE

iii

COMPLEX VECTORS 57
COMPLEX VECTOR PROPERTIES 58
COMPLEX VECTOR METHODS 59
INTEGER VECTORS 59
INTEGER VECTOR PROPERTIES 60
INTEGER VECTOR METHODS 61
INDEXING AND SLICING 61
THE FAST FOURIER TRANSFORM 62
FFT PROPERTIES AND INDEXERS 63

SEQUENCES 65

DOUBLE-VALUED SEQUENCES AS LIGHT VECTORS 65
SEQUENCE CONSTRUCTORS 65
THE UNFOLD SEQUENCE GENERATOR 66
METHODS AND PROPERTIES 67
INTEGER SEQUENCES 69
CLASS METHODS 69
METHODS AND PROPERTIES 70
COMPLEX SEQUENCES 71
CLASS METHODS 71
DELAYED EXECUTION 72

MATRICES 75

MATRIX CONSTRUCTION 75
CLASS METHODS 75
METHODS AND PROPERTIES 76
MATRIX OPERATORS 77
OPTIMISATIONS 78
INDEXING AND SLICING 79
EIGENVALUES DECOMPOSITION 79
LU FACTORISATION 81
CHOLESKY DECOMPOSITION 82

LIST COMPREHENSIONS 83

SYNTAX 83
TYPES IN LIST COMPREHENSIONS 83
GENERATORS 84
QUANTIFIERS IN LIST COMPREHENSIONS 84

SPLINES 87

CREATING SPLINES 87
INDEXERS, METHODS, AND PROPERTIES 88

THE AUSTRA LANGUAGE

iv

INTERACTING WITH A SPLINE 89

MODELS 91

MEAN VARIANCE OPTIMISER 91
MORE CLASS METHOD OVERLOADS 93
ADDITIONAL CONSTRAINTS 94
LINEAR PROGRAMMING 95

INDEX 97

1

Welcome to AUSTRA
AUSTRA IS AN EFFICIENT mathematical library, writ-
ten in C# and running on .NET Core, which is also
used by a small functional language designed to
handle financial series and common econometric
models.

Both library and language, also support vectors,
matrices, transforms and the most frequently used
operations from linear algebra, statistics, and prob-
ability.

The library code is hardware-accelerated, using all re-
sources provided by the CPU. The language compiler is
also an optimising compiler, detecting common expression patterns and substituting
them with more efficient method calls, whenever possible.

Austra contains three main components:

1. The Austra library, written in C# and .NET Core 8.
2. The Austra language: a simple formula-oriented language for testing and ex-

ploring the library.
3. The Austra application: a desktop application, written in WPF for Windows,

providing a code editor with syntax highlighting and code completion, for try-
ing the language.

The design of the library
The library has been designed as a set of mostly immutable types, to facilitate their
concurrent use. Most of the methods are hardware-accelerated, either using man-
aged references, SIMD operations, or both. Memory pinning, and raw pointers, have
been reduced to a minimum, to ease the garbage collector's work.

Using immutable vectors, series and matrices has one drawback, and it is more
stress for the garbage collector. For that reason, we offer combined operations, like
other libraries do, to fuse several linear operations into one, when possible. The
AUSTRA parser detects most of these cases for optimising them.

Vectorisation versus tasks
This might sound unintuitive, but it has been a guide when designing the Austra Li-
brary:

THE AUSTRA LANGUAGE

2

Library code should make as much use as possible of hardware vectorisation, and
only when this way is exhausted, you should turn to task concurrency if it makes
sense.

My points:

• Library methods are usually short. For instance, the implementation of the Map
method from a vector or sequence is embarrassingly parallel, but even a vector
with 2048 items takes around a microsecond to be mapped. That is a very short
time span to attempt parallelisation using tasks: the overhead of starting and
waiting for finalisation trumps any gains of task parallelism.

• Neither vectorisation nor parallelisation play nice with modularity.

• We have chosen, for Austra, applying all possible vectorisations at the lowest
level, and leaving task parallelism to higher level abstractions designed by the
consumers of the class.

In any case, using task parallelisation with Austra is easy, in part due to classes im-
plementing non-mutating operations.

Linear Algebra
Austra provides classes for dense vectors and matrices, for double-precision arith-
metic. It also features an efficient complex vector type. Single-precision floats, com-
plex and sparse matrices are planned for a future sprint. All operations takes ad-
vantage of C# operators when possible, so most of the operations are non-destruc-
tive.

There are three classes for representing matrices:

• Matrix is the general type that you will use the most.

• Lower triangular matrices are represented by the LMatrix type.

• Upper triangular matrices are represented by the RMatrix type.

The point with these two additional types is not to save space, since the underlying
data structure is the same, but to provide a more efficient implementation of a couple
of methods and operators. There are also logical advantages, regarding type safety
since some decompositions returns triangular matrices.

As usual, matrix multiplication has been fully optimised using loop reordering and
unrolling, blocking and hardware intrinsics, including fused multiply and add. There
are variants for multiplying a matrix by another matrix transposed on-the-fly, for
multiplying a vector by a transposed matrix and for accelerating linear combinations
of vectors.

All these types are read-only structures, acting as a thin layer above C#'s arrays.
Even the storage for a matrix is a one-dimensional array, since multidimensional

WELCOME TO AUSTRA

3

arrays in .NET are less optimised for bound checking, getting a managed reference
and other low-level operations.

Matrix factorisations
Austra provides classes for the following matrix factorisations:

• Lower-Upper (LU) Factorisation.
• Cholesky Factorisation.
• Eigenvalues Decomposition (EVD).

Linear equation solving uses the LU factorisation internally.

Time series
The kernel of Austra was an implementation of the Mean-Variance optimiser. This
means that time series were implemented before vectors and matrices.

Series are collections of pairs date/value, and they are sorted by date. Values can be
used as vectors, but there are some differences. Vector operations check, at run
time, that the operands have the same length. The same behaviour would be hard to
enforce for series. On one hand, each series can have a different first available date.
On the other hand, even series with the same frequency could have reported values
at different days of the week or the month, and still, it could be interesting to mix
them.

Mean-Variance Optimiser
A Mean-Variance Optimiser implementation is included, starting with the MvoModel
class. This functionality is available at the formula language via
the model::mvo class method.

The MVO model is rendered as an interactive model by the AUSTRA desktop appli-
cation.

Polynomials and root finding
The Polynomials static class provides methods for polynomial evaluation and root
finding. The Solver class implements a simple variant of the Newton-Raphson
method for root finding.

There is also a PolyEval for evaluating polynomials using the Horner's method, and
a PolySolve for analytically finding roots whenever possible, and using the eigen-
values of the Frobenius matrix in the general case. There is even a PolyDeriva-
tive for computing the derivative of a polynomial at a given abscissa.

Natural cubic splines have also been implemented, both for series and for functions,
using a grid. You can even calculate the derivative of a spline at any point in the sup-
ported range.

THE AUSTRA LANGUAGE

4

Fast Fourier Transform
Austra implements a decent FFT algorithm, compared to most popular managed im-
plementations. It uses the Cooley-Tukey algorithm, and it's optimised for small sizes.
Small primes are handled either with Bluestein's or Rader's algorithm, depending on
the size.

In any case, there is still room for improvement, and it's planned to be optimised in
the future. AVX prefers structs of arrays over arrays of structures, and this prefer-
ence obviously applies to complex arithmetic: it's more efficient to represent the real
and the imaginary parts of a list of complex numbers in separate arrays.

Language goals and design
One of the motivations for creating Austra was having an easy-to-use language for
testing and exploring functionality.

• The language should be mostly a functional one. Functional languages are ex-
pression-oriented, concise, and discourage mutability. These features match
very well with the characteristics of the library.

• On the other hand, we did not want a complicated language with lazy evaluation
and monads. I really like monads! Some of my best friends are monads! Jokes
aside: I want Austra to be used by a wide base of professionals, instead of a se-
lected group of freaks.

• A problem with R and MATLAB, which loosely fall in the same category as Austra,
is the pollution of the global namespace. We wanted to avoid that. Instead of hav-
ing a global product function that you could apply to a vector, we prefer a prod-
uct method that is a feature of vectors.

There is also an important non-goal:

• We are not trying to substitute C# with Austra. AUSTRA, the language, is not sup-
posed to be a Turing-complete programming language.

These are some consequences of the non-goal:

• We do not intend to write the Austra library in AUSTRA. That may be the goal for
a next step, and, indeed, we already have some ideas and plans to do it. It would
require, for make any sense, automatic vectorisation, for example.

• The type system of AUSTRA is very simple. There are no generic types. Type in-
ference is primitive. Only a handful of classes from the library are fully exposed.
And, in the current version, we still have no support for tuples.

To diminish the complexity of using the language, we also conceal some types as
much as possible, to reduce the number of class names the programmer must re-
member. The language defines a small set of classes on which class methods, i.e.,
constructors and static methods, can be called. These classes are:

WELCOME TO AUSTRA

5

• math, for grouping global functions and variables.
• matrix, for dealing with all kinds of matrices.
• vec, cvec and nvec, for real vectors, complex vectors, and integer vectors.
• seq, cseq and nseq, for real sequences, complex sequences, and integer se-

quences.
• series, for time series.
• spline, for cubic splines.
• model, for mathematical models and tools.

Of course, AUSTRA manages a long list of types, from primitive types such
as date, bool and int, to classes generated by transforms or matrix factorisations.

Arrays in AUSTRA
One example of how AUSTRA tries to hide complexity from the user is how arrays
are handled by the language. Arrays pervade the library. You need an array of reals
to create a vector, an array of vectors to create a matrix, and another array of series
to create a covariance matrix. But arrays do not match well with a functional pro-
gramming style.

What AUSTRA does is accept a variable number of parameters wherever a method
needs an array parameter. This is, for instance, how AUSTRA creates a covariance
matrix from a list of series:

matrix::cov(aaa, aab, aac);

matrix::cov(aaa, aab, aac, aad);

And this is how we efficiently create a linear combination of three series, including
an "intercept," that is, a constant additional term in the linear combination:

series::new([0.1, 0.2, 0.3, 0.4], aaa, aab, aac);

In both cases, the implementing code receives an array of series as its last parame-
ter, and AUSTRA automatically gathers all series at the end of the method call in a
single array.

7

Language overview
AUSTRA IS A SMALL functional language designed to han-
dle financial series and common econometric models. It
also implements vectors, matrices, and the most fre-
quently used operations from linear algebra, statistics,
and probabilities.

AUSTRA formulas are efficiently parsed by a .NET En-
gine, and they are translated into fast-running native code
that calls routines also implemented in .NET that take ad-
vantage of multicore systems and SIMD extensions.

This topic introduces the basic syntax of the language.

Lexical syntax
The lexical syntax of AUSTRA is remarkably like most programming languages:

• White space, including line returns, are completely ignored.
• Identifiers and keywords are key insensitive.

• Unicode characters are allowed in identifiers. So, yes: τ = 2*π is a valid expres-
sion. Of course, pi is also allowed, and the code editor helps while typing Greek
characters.

• Semicolons (;) are mandatory for separating statements, but not as statement
terminators.

Numeric literals
Integer and real numbers are represented as in most programming languages. Here
are some examples:

2023;

1.0;

-0.1E-16

Number literals can be suffixed with a lower-case i to represent an imaginary value:

2.0i;

-3i

The identifier i, by its own, represents the imaginary unit:

1-3i = 1 - 3 * i

Complex numbers can also be created using the complex function:

THE AUSTRA LANGUAGE

8

complex(1, -3) = 1 - 3 * i;

complex(3) = 3 + 0i

Since i is not a keyword, you must be careful because it can be redefined as a user
variable.

Complex can also be built using the polar notation:

polar(1, pi/2) -- Another way to write the imaginary unit.

String literals
String literals are enclosed by double quotes and cannot cross line boundaries.

"A simple string literal";

"A string literal with a quote: ""Wow!"". That was the quote."

Date literals
Date literals come in two flavours. A simple literal only includes the month and year,
assuming the first day of the month:

jan20;

jul2021

Two-digit years are first interpreted as a year inside the XXI century. If the resulting
date is more than 20 years ahead, 100 years are subtracted to that date. For instance:

jan20; -- January 1st, 2020

may42 -- May 1st, 1942

A day can be added to the constant core using this syntax:

6@jan20;

31@jul2021

Comments
Though we do not expect anyone to write hundreds of pages of AUSTRA script, we
still support line comments for better documentation. Comments always start with
two consecutive hyphens and extend to the next line feed or the end of the expres-
sion, whatever comes first:

-- A verbose version of math::min()

if aapl.mean < msft.mean then aapl.mean -- Another comment.

else msft.mean

LANGUAGE OVERVIEW

9

Root objects
Every AUSTRA expression must start with a root object. It could be either a global
variable, a local variable, a class method, a class variable, or a code definition.

Global variables
Global variables come in two flavours: persistent variables and session variables.
Persistent variables come mostly from an external source, like a JSON file, a data-
base, or an external service. In this AUSTRA version, those persistent variables are
always time series because they have a predictable serialisation format. This design
decision, of course, may change at some point in the evolution of the library.

For instance, when I open the AUSTRA application in my system, it automatically
loads a set of series and definitions that are stored in a subfolder Austra of my Doc-
uments folder, in a file named data.austra, and its main windows looks something
like this:

Persistent series are shown below a Series node. I can type the name of any of these
variables in the Code Editor:

aaa

When I press F5, AUSTRA translates the expression and immediately shows the con-
tent of the aaa series:

THE AUSTRA LANGUAGE

10

Session variables
Session variables, as the name indicates, are defined inside a user session, and die
with the session. They are defined and removed using the set statement:

set v1 = [1, 2, 3, 4, 5];

set v2 = v1.map(x => 1 / x);

v2.plot;

-- v1 is removed now:

set v1;

-- v2, however, persist for the rest of the session.

v2.plot;

-- You can assign more that one session variable in a statement.

set p2 = 2pi, p3 = 3pi;

Only the value of the variable is stored, but not the formula that was used to calculate
that value. This means, for example, that every use of the session variable will return
the same value, even if the value was created using a random number generator:

-- v1 is created using random numbers:

set v1 = vec::random(10);

-- Every use of v1 always returns the same vector:

v1 = v1;

-- This is in contrast with the behavior of local variables.

let v2 = vec::random(10);

-- This expression will return false:

v2 = v2

Local variables are explained in the next section.

Session variables appears in the Variables panel, each one inside a node according
to their types:

LANGUAGE OVERVIEW

11

Class methods and class constants
Class methods in AUSTRA correspond both to constructors and static methods in
traditional OOP languages, like C#.

Let's start with some variables:

i = math::i;

e = math::e;

pi = math::pi and pi = math::π

The same equivalence is valid for what we normally would consider "global func-
tions":

exp(π*i);

math::exp(math::pi * math::i)

Those global functions and constants are considered by the compiler as belonging to
the math for avoiding problems if any of these symbols is redefined as a persistent
or session variable.

Of course, there are more classes than math, and we can use their class methods for
creating new objects:

matrix::random(10);

vec::new(10);

vec(10)

As the last example shows, when you call a new method on a class, you can omit
the ::new part and use just the class name as synonym.

13

Primitive types

AUSTRA ARITHMETIC IS basically the same as on most pro-
gramming languages. The language supports:

• 32 bits integers, represented by the int type.
• 64 bits integers, represented by the long type.
• 64 bits double-precision reals, represented by

the double type.
• 2x64 bits double-precision complex values, repre-

sented by the complex type.

Smaller arithmetic types are automatically converted by the compiler to bigger types
when required: int to double, double to complex, and even int to complex. Dou-
ble values can be converted into integer values using the toInt property, as
in pi.toInt.

Operators
These are the operators available for integers and reals:

+ Addition. Can also be used as a unary operator.

- Subtraction. Can also be used as a unary operator for negation.

* Multiplication.

/ Both real and integer division.

% Both integer and real remainders.

^ Power: 2^3 = 8, 9^0.5 = 3.

Most of them may also be used with complex numbers.

Though the power operator works both for integer, real and complex numbers, the
compiler optimises the cases when the power is 2, 3 and 4, so equalities like this ex-
actly holds:

i^2 = -1

The multiplication operator can be elided when the first operand is a real or an inte-
ger and it is immediately followed by an identifier:

THE AUSTRA LANGUAGE

14

2pi = 2 * pi

2x^2 + 3x + 1 = 2*x^2 + 3*x + 1

1/2x = 1 / (2*x)

AUSTRA also recognises a superscript 2 (²) as an operator to square a value:

2x² + 3x + 1 = 2*x^2 + 3*x + 1

The AUSTRA code editor simplifies typing this operator with the key’s combination
(CTRL+G, 2).

Comparisons
These operators are used for comparing all compatible operands:

= Equality.

!= Inequality.

<> A synonym for the inequality operator.

< Less than.

<= Less than or equal to.

> Greater than.

>= Greater than or equal to.

<- Belongs to. Right side must be a vector or a sequence.

∈ A fancy synonym for the membership operator (<-).

The membership operator can be used with sequences, vectors, matrices, and se-
ries:

34 <- [1..100];

0 <- vec::random(1024)

When the right side of the membership operator is a time series, the left operand
may be either a real or a date:

0.0 <- appl.rets;

1@jan2020 <- appl

Comparisons can be fused for numeric operands using the following syntax:

sqrt(pi) <= pi <= pi²

PRIMITIVE TYPES

15

Fused ranges only require combining same-direction comparisons. For in-
stance, <= and < are compatible, but < and > are not.

Complex properties and operators
When you have a complex value in your hands, you can drill into it using a dot and a
property name, to extract information about the poor little value:

real The real part of the complex.

imaginary The imaginary part of the complex.

magnitude A magnitude, i.e., the distance to complex(0, 0).

phase The phase, in radians.

let c = complex(3, 4) in

 c = c.real + c.imaginary * i

If typing magnitude is too hard for your nerves, you can use mag as an accepted syn-
onym. real can be shortened to re, and imag and even im can be used instead of im-
aginary. Since my heart is cold and empty for phase, on the other hand, there is no
diminutive for that fellow.

In addition to the usual operators, there is a suffix operator for conjugating a com-
plex value:

' Unary suffix operator for complex conjugation.

The ' operator is also used for conjugating complex vectors and transposing a ma-
trix.

Integer properties
Integer values support the even and odd properties for easy testing of parity:

iff(e.toInt.even, "Truncated to 2", "Rounded to 3")

The math class
The math class groups methods and properties dealing with arithmetic operations.
Most of these features come straight from the C#'s Math and Complex, but it also in-
corporates other functions that are used in statistics and probabilities.

Our math is special in that the class prefix is assumed when not present in a function
or property call:

THE AUSTRA LANGUAGE

16

-- Write like this, if you are a sucker for pain.

math::sin(math::pi/4) = math::sqrt(2)/2;

-- Standard people use this style.

sin(pi/4) = sqrt(2)/2

Why, for the love of Mike, have we sunken all those definitions inside the math class?
It is easy to explain with two points: we did not want to pollute the global name space
with lots and lots of symbols in the first place. Some mathematically oriented lan-
guages do just this: everything is a global function, so, at some point, you must come
up with very clever but cryptic names for your own stuff. Nonetheless, we can omit
the class name for the most used names. The second point is related: somebody can
shadow one of these global names, such as i or max. In those cases, you still have
the long and winding road of prefixing the shadowed name with its class name, and
nothing is lost.

These are the methods or functions provided by this class. Most of them work with
both integer, real, and complex parameters:

abs Absolute value

acos The angle whose cosine is the specified parameter.

asin The angle whose sine is the specified parameter.

atan(x)
atan(x, y)

The angle whose tangent is the specified parameter.
The version with two parameters is equivalent to Atan2.

beta(x, y) Bi-parametric Euler integral of the first kind.

cbrt Cubic root.

complex Creates a complex number from one or two real values.

cos The cosine function.

cosh The hyperbolic cosine function.

erf The error function.

exp The exponential function.

gamma The gamma function: an extension of factorials for real
numbers.

lnGamma The natural logarithm of the gamma function.

log The natural logarithm function.

log10 Base 10 logarithms.

PRIMITIVE TYPES

17

max The maximum of its two parameters.
It also works with dates.

min The minimum of its two parameters.
It also works with dates.

ncdf Normal cumulative distribution function.

polar Creates a complex from its circular coordinates.

probit The inverse of the cumulative of the standard normal dis-
tribution.

round(d) Rounds a real to the nearest integer.

round(d, i) Rounds a real to the given number of decimals.

sign Returns the sign of the argument.

sin The sine function.

sinh The hyperbolic sine function.

sqrt The square root.

tan The tangent function.

tanh The hyperbolic tangent function.

trunc Truncates a real value.

These are the properties (parameter-less functions) and constants provided by math:

e Euler's constant.

i The imaginary unit.

maxInt The maximum value that is representable in an integer.

maxReal The maximum value that is representable in a real.

minInt The minimum value that is representable in an integer.

minReal The minimum value that is representable in a real.

nrandom A random number from the standard normal distribution.

pearl An Easter Egg. Just try me!

THE AUSTRA LANGUAGE

18

pi, π Don't be irrational: be transcendent.

random A random number from a uniform distribution between 0
and 1.

tau, τ Twice π.

today The current date.

Polynomials and solvers

These methods are also defined inside the math class, so they can be used without
explicitly writing the class prefix:

solve A simple Newton-Raphson solver. See below for details.

polyEval Evaluates a polynomial given a real or complex argument.

polyDerivative Evaluates the first derivative of a polynomial at a real or
complex argument.

polySolve Calculates all the roots of a polynomial.

The Newton-Raphson solver is a function accepting from three up to five arguments:

solve(x => sin(x) - 1, x => cos(x), 0, 1e-9, 100)

The first two arguments are lambda functions: one for the function we want to solve
for a root, and the second for the first derivative of that function. Please note
that solve does not verify that the lambda function and its derivative lambda match.
The third argument is required and represents the initial guess to start running the
algorithm. Again, a bad guess may make the algorithm fail.

The fourth and fifth arguments can be omitted. The fourth parameter is the desired
accuracy, and when omitted, it defaults to 1e-9. The last parameter is the maximum
numbers of iterations, which by default is 100.

The polyEval function takes either a complex or a real as its first argument, and a
list of coefficients, either in a single vector or as a list of real values, and evaluates
the polynomial at the supplied value:

let x1 = complex(-1, sqrt(2)), x2 = x1';

-- 1, 2, 3 represents the polynomial x² + 2x + 3

polyEval(x1, 1, 2, 3);

-- Coefficients can be grouped in a vector.

polyEval(x2, [1, 2, 3]);

PRIMITIVE TYPES

19

The inverse of polyEval is the polySolve function. It takes either a vector or a list
of reals and considers them as the coefficients of a polynomial. The first value is the
coefficient of the highest degree term. For instance, the vector [1, 2, 3, 4] stands
for the polynomial 𝑥3 + 2𝑥2 + 3𝑥 + 4. This function can throw an exception if it does
not know how to manage a given polynomial, or when there are no available roots.
The returned value is always a complex vector, even when all roots are reals. For
instance:

polySolve(1, 2, 3)

You can check the accuracy of the answers from the solver using this trick:

let poly = [1, 2, 3] in

 polySolve(poly).all(c => abs(polyEval(c, poly)) <= 1e-15)

Of course, the accuracy of the roots may vary according to the polynomial.

A close relative of polyEval is polyDerivative, which calculates the derivative of
a given polynomial at the specified argument:

let v = [1, 2, 3, 4];

polyEval(2, v) = 26;

polyDerivative(2, v) = 23

polyDerivative can be useful when finding a real root for a polynomial using the
Newton-Raphson algorithm.

Dates
Dates in AUSTRA are represented by the date type and stores the number of days
since Jan 1st, 1900. Dates support these properties:

day Gets the day of month, starting by 1.

dow Gets the day of the week.

isLeap Is the year from the date a leap one?

month Gets the month of the date, starting with 1.

toInt Converts the date to a signed integer.

year Gets the year of the date.

These two methods allow adding either a positive or a negative number of months or
years to a date:

THE AUSTRA LANGUAGE

20

addMonths Adds a positive or negative number of months to a date.

addYears Adds a positive or negative number of years to a date.

Adding or subtracting days from a date is achieved with these operators:

+ Adds days to a date. The left operand must be a date.

- Subtracts days from a date. The left operand must be a date. It can also
be used to find the difference in days between two dates.

Logical values
Logical values are represented by the bool data type. Variables and parameters of
this type hold one of these two constants: either false or true.

Operators acting on logical values resemble more the good-old Pascal operators than
the C/C++/C# ones. It's a matter of personal preference, of course, but also of reada-
bility:

not Logical negation.

and Logical conjunction.

or Logical disjunction.

The precedence of these operators is the standard one. Negation binds first, then
conjunction, and finally disjunction.

Conditional expressions
Since AUSTRA is a functional language, it doesn't have "statements". However, it
provides an if/then/else ternary operator, equivalent to the also in-
cluded iff() function:

if aapl.mean < msft.mean then aapl.mean else msft.mean

Of course, the above expression is just a pedantic way to write min(aapl.mean,
msft.mean). It can also be written using iff() this way:

iff(aapl.mean < msft.mean, aapl.mean, msft.mean)

Most of the times, the more verbose ternary operator is easier to read. The ternary
operator has another advantage: you can chain more than one conditions and re-
sponses using the elif keyword.

PRIMITIVE TYPES

21

let x = random;

if x < 0.1 then "Too low!"

elif x < 0.5 then "A little low"

elif x < 0.9 then "A little high"

else "Too high!"

23

Definitions
CODE DEFINITIONS ARE formulas saved for future use. They
are saved and loaded from any persistent storage used by
AUSTRA. You can define either definitions without pa-
rameters, which act like macros, or parametric defini-
tions, which are the equivalent of user-defined functions.

Creating definitions
Definitions are created using the def statement:

def cxMvo = model::mvo(sm_ret, sm_cov, sm_low, sm_high)

A description can be associated to a definition using the following syntax:

def cxMvo:"MVO Model" = model::mvo(sm_ret, sm_cov, sm_low, sm_high)

Removing an existing definition is achieved with the undef command:

undef cxMvo

In the AUSTRA desktop application, definitions appear in the Variables panel, in-
side a Definitions node:

THE AUSTRA LANGUAGE

24

Definitions cannot use session variables
Code definitions must respect a rule: they cannot reference session variables. This
sequence of commands is invalid:

set vector = [1, 2, 3, 4];

def fact4 = vector.product; -- Invalid code definition.

def fact5 = [1, 2, 3, 4].product; -- This, however, it’s fine.

The reason behind this constraint is that session variables only store their current
values, but not the formula that generated that value.

Definitions may use existing definitions
A code definition may refer to an existing definition. For instance:

def sm_cov = matrix::covariance(aapl, msft, esx, dax);

def sm_ret = [1, 0.9, 1.2, 0.8];

def cxMvo = model::mvo(sm_ret, sm_cov, vec(4), vec::ones(4))

In this case, removing either sm_cov or sm_ret, would also remove cxMvo.

Deterministic calls
Let's say we write this definition:

def extProduct = vec::random(4) ^ vec::random(4)

This definition calls twice a class method that creates a random vector. The caret
operator, ^, combines those two vectors in a 4x4 matrix. Executing these definitions
two times in a row gives, as expected, different results:

> extProduct

ans ∊ ℝ(4⨯4)
0.416065 0.493621 0.412334 0.0249965

0.390261 0.463007 0.386762 0.0234462

0.377909 0.448353 0.37452 0.0227041

 0.49103 0.58256 0.486626 0.0295002

> extProduct

ans ∊ ℝ(4⨯4)
0.0251534 0.0182728 0.0452763 0.00933612

0.0374942 0.0272379 0.06749 0.0139167

0.0555746 0.0403725 0.100035 0.0206275

0.0256057 0.0186015 0.0460906 0.00950403

That is the expected behaviour. However, this could be inconvenient to test proper-
ties of the result. For instance, we could want to check the determinant of the prod-
uct, or that a double transpose works fine:

DEFINITIONS

25

extProduct = expProduct''; -- Double transpose.

(extProduct * extProduct).det - extProduct.det ^ 2

AUSTRA assumes that, inside a formula, all parameter-less definition calls must re-
turn the same value. For that purpose, the two above formulas are internally rewrit-
ten as:

let x = extProduct in x = x'';

let x = extProduct in (x * x).det - x.det ^ 2

The parser creates a local variable under the hood for evaluating the definition just
once inside the current formula.

This automatic caching only takes place for parameter-less definitions. If you want
to disable this behaviour, just add an exclamation sign right after the definition iden-
tifier, when using the definition:

-- This first expression returns true.

extProduct = extProduct;

-- This second expression returns false.

extProduct = extProduct!;

-- This expression also returns false.

extProduct! = extProduct

Function definitions
A definition can also have parameters, for defining a function. For instance, the fac-
torial of an integer can be defined this way:

def fact(n: int) = iff(n <= 1, 1, [2..n].prod)

The above definition is non recursive. Recursive functions must declare their return
type:

def recFact(n: int): int =

 if n <= 1 then 1 else n * recFact(n - 1)

You can use local variables when defining a function:

def mcd(a, b: int): int =

 let m = a % b in iff(m = 0, b, mcd(b, m))

And you can also define auxiliary functions inside a function definition:

def fact(n: int) =

 let f(n, acc: int): int = iff(n <= 1, acc, f(n - 1, n * acc)) in

 f(n, 1)

THE AUSTRA LANGUAGE

26

In this case, the inner function f is the one that is directly recursive. The outer func-
tion does not need to declare its return type.

Describing a function definition
A permanent description can be attached to a function definition using the same syn-
tax as before:

def fact: "Iterative factorial"(n: int) =

 iff(n <= 1, 1, [2..n].prod)

The description will be serialized and saved in whichever data storage Austra uses.

Type names in AUSTRA
These are the types that can be explicitly used for parameters and return types in
function definitions:

bool The logical data type.

int 32-bit integers.

long 64-bit integers.

real Double precision reals.

date Austra dates.

string Strings.

complex Double precision complex values.

series Time series.

matrix Dense double precision matrices.

vec, cvec, ivec Real, complex, and integer vectors.

dvec Date vectors.

seq, cseq, iseq Real, complex, and integer sequences.

Arrays can be specified adding two brackets after a type name. Function types fol-
lows this convention:

-- A function that receives a real, and returns a real:

real => real

-- Receives an integer and a vector, and returns a real:

int => vec => real

DEFINITIONS

27

For instance, this definition allows to apply a function twice to an argument:

def twice(x: real, f: real => real) =

 f(f(x))

This function can be called like this:

twice(1, sin)

29

Local variables
AUSTRA IS A FUNCTIONAL language, so it has a functional
technique for declaring what in a procedural language
would be temporal or local variables.

LET clauses
The functional technique for declaring local variables in
a formula is the let clause.

let m = matrix::lrandom(5),

 m1 = m * m',

 c = m1.chol in

 (c * c' - m1).aMax

In the above example, a lower triangular random matrix is computed, and it is mul-
tiplied by its transpose. Then, the Cholesky transform is calculated and finally we
check that the transform is valid, evaluating the absolute maximum of the matrix dif-
ference.

The m, m1 and c variables only exist while the formula is being evaluated. As the ex-
ample shows, each variable defined in the let clause can use any of the previously
declared variables in the same clause.

Script-scoped LET clauses
When writing more than one statement in a script, let/in clauses are valid only for
the statement they precede, but not for other statements:

let m = matrix::lrandom(5),

 m1 = m * m',

 c = m1.chol in

 (c * c' - m1).aMax;

-- The next statement cannot use "m".

m

If you need a local variable to be available for all statements that follow in a script,
you must use a variant of let which does not terminate with an in keyword, but
with a semicolon:

let m = matrix::lrandom(5);

-- Now, "m" is available for the rest of the script.

let m1 = m * m',

 c = m1.chol in

 (c * c' - m1).aMax;

THE AUSTRA LANGUAGE

30

-- The next statement is valid.

m

 Note

Some functional languages, as Haskell, feature another construct for abstracting
sub-expressions. Haskell, for instance, offers both let and where. let is located be-
fore the expressions that make use of it, and where comes after the main expression.

In AUSTRA, we prefer let, for the sake of Code Completion. So far, I cannot think of
any use for where that cannot be solved better with let.

Local function definitions
Functions can be defined in let clauses. For instance:

let mcd(a, b: int): int = if a % b = 0 then b else mcd(b, a % b) in

 mcd(80, 140)

In the above example, the function is defined in a let/in clause, but it could also be
defined as a script-scoped local function.

 Note

Since mcd is recursive, its return type must be declared in the function header.

Function definitions may have their own local variables, as in this variant of the
above example:

let mcd(a, b: int): int =

 let m = a % b in iff(m = 0, b, mcd(b, m)) in

 mcd(80, 140)

This way, we save one evaluation of the remainder.

Local functions may also be declared inside other functions. For instance, this code
defines a function for the factorial, but uses an intermediate function that can be
evaluated using tail recursion, for efficiency:

let fact(n: int) =

 let f(n, acc: int): int = iff(n <= 1, acc, f(n - 1, n * acc)) in

 f(n, 1);

fact(10)

Please note that the in keyword applies to the right-side of the definition of facto-
rial. The let clause that defines factorial, on the contrary, is a script-level
clause, with no associated in.

31

Lambda functions
LAMBDA FUNCTIONS ARE inline-defined anonymous func-
tions that can be used as parameters in normal methods
and class method calls.

Lambda functions with one
parameter
Series and vectors, for instance, have an all method to
check if all their numeric values satisfy an arbitrary condition. The condition is the
only parameter of the method and must be passed as a lambda function. Let us say
we have an aapl_prices persistent variable holding a series of prices. We can verify
that all those prices are positive using this formula:

aapl_prices.all(x => x >= 0) -- It should return true.

The above formula checks whether all values in the price series are non-negative.
That's the role of the all method, which checks that all values in a series satisfies a
given predicate. The way we state the predicate to be satisfied is using this syntax:

x => x >= 0

This can be read as "given an arbitrary value x, check that it is non-negative". We can
use all for any other purpose, such as checking that all values in a series lie inside
the (0, 1) interval:

prices.all(value => 0 < value < 1)

Notice that in this new example, we have used another name for the "arbitrary given
value": value instead of x. This renaming has no effect in the formula.

This example shows how to use the related method any:

prices.any(x => x >= 1)

In this case, we are checking whether exists at least one value in prices that is above
1.

Both any and all require a predicate as argument: a formula that given an arbitrary
value, returns true or false. The map method, instead, requires a more general
function that converts a real value into another one. Let us say we want to limit val-
ues from a series, so that no one is greater than 1000:

THE AUSTRA LANGUAGE

32

prices.map(x => min(x, 1000))

In all cases, the type of the parameter of the lambda is determined by the method the
lambda is passed, and so is the returned type. AUSTRA adds any required conver-
sion, as when a double is required for the result and an integer expression is being
returned. Regarding the name of the lambda's parameter, you can use any name you
like, keeping in mind that it will shadow any predefined identifier inside the lambda
function's body.

Function names as lambdas
In many cases, you need a lambda that takes a single parameter to transform it into
another value from the same type. For instance, the sine function can be approxi-
mated using a spline over a uniform grid like this:

let s = spline(0, 2*pi, 1024, x => sin(x)) in

 s[pi/4]

The above code can be shortened to this:

let s = spline(0, 2*pi, 1024, sin) in

 s[pi/4];

Or even this if you need to qualify the function name for any reason:

let s = spline(0, 2*pi, 1024, math::sin) in

 s[pi/4];

Since sin is a function with a single parameter and no parameters are supplied, the
compiler understands that the function must be used to create a mono-parametric
lambda, returning a real value.

Lambda functions with two parameters
Some methods require lambda arguments with more than one parameter. When a
lambda requires two or more parameters, their names must be enclosed inside pa-
renthesis, and must be separated by commas.

iseq(1, 10).reduce(0, (x, y) => x + y)

zip can act on arguments with different lengths, so it only acts in the common part
of both. It generates a new series, vector or sequence, and each item will be the com-
bined value created by the lambda function. In the above example, it will be the max-
imum price for each common date.

LAMBDA FUNCTIONS

33

Binary operators as lambdas
You can also use a binary operator as a shortcut for a lambda definition. This code
uses the reduce method on a sequence of integers for summing all items in the se-
quence

aapl_prices.zip((x, y) => max(x, y))

You can substitute the lambda definition with a reference to the binary operator, in-
cluding its class name:

iseq(1, 10).reduce(0, int::+)

This trick, so far, only works with binary operators.

Captured variables
The ncdf() method of a series takes a real value and classifies it according to its po-
sition in the normal distribution implicitly defined by the series. It is, by definition, a
value between 0 and 1. Even better, ncdf() is monotonic: 𝑥 < 𝑦 ⇒ 𝑠. 𝑛𝑐𝑑𝑓(𝑥) <
𝑠. 𝑛𝑐𝑑𝑓(𝑦). All this means that this method is a convenient way to compress an arbi-
trary series, so all their values lie between 0 and 1, while preserving the shape of the
series.

This formula does the trick:

aapl.map(x => aapl.ncdf(x))

Nothing remarkable here: aapl is a global identifier, and it should not surprise us
that we can use it both in the main formula and in the nested lambda. This is the
original series:

THE AUSTRA LANGUAGE

34

And this is the compressed series:

Please note that the main difference between both charts is the range of values.

What if what we really wanted was the compressed series with the simple returns of
prices? Not a big deal. This, obviously, works:

aapl.rets.map(x => aapl.rets.ncdf(x))

But we can do it much better, using a let clause:

let a = aapl.rets in

 a.map(x => a.ncdf(x))

Though a is a local variable defined in the main body of the formula, we still can ref-
erence it from our nested lambda function. This way, we avoid recalculating the re-
turns of the series in the lambda's body.

 Note
The series.ncdf(x) method assumes that values in the series can be described by
a normal distribution. This is seldom true.

A most useful related method is series.movingNcdf(points), which calculates
the ncdf for each value in the series but calculates the two parameters that defines
a normal distribution from a configurable interval of points preceding each calcula-
tion.

Nested lambdas
Another kind of capture takes place when a lambda function is defined inside an-
other lambda. This formula finds all prime numbers up to 100, and uses nested lamb-
das:

iseq(2, 100).filter(x => iseq(2, x - 1).all(div => x % div != 0))

LAMBDA FUNCTIONS

35

 Note

The above code also uses sequences for generating a range or list of integers.

The underlined text is a definition of a lambda that is being used as the argument of
the filter method. It's a function with a single parameter x. Note, however, that in-
side that lambda, we call another method that has its own lambda function, using the
parameter div. The inner lambda can use both its own parameter div, but it also can
use x, defined by the outer function.

37

Time series
THE MOST IMPORTANT data type in AUSTRA is the time se-

ries: a sorted collection of pairs date/value.

Series come from external
sources
Since time series represent data from the real world, most
of the time, series come from persistent variables that can be
stored in an external file or database and may be periodically updated, either by AUS-
TRA or by another process.

Additional information in series
Since one of the goals of AUSTRA is to deal with financial time series, there is a few
optional properties that can be stored in a series:

Name

The name of the series is the name that is used by the parser to locate a series.
For this reason, the series' name must be a valid identifier.

Ticker

However, it's frequent for series to be identified by traders by their tickers,
which is the name assigned by the provider of the series. A ticker is not nec-
essarily a valid identifier, so we provide two different fields, one for the name
and the second for a ticker. A ticker can be empty.

Frequency

Each series has an associated frequency, which can be daily, weekly, bi-
weekly, monthly, bimonthly, quarterly, semestral, yearly, or undefined. The
library, at run time, checks that both operands in a binary operation have al-
ways the same frequency.

Series type

In addition, each series has a type that can be either Raw, Rets, Logs, Mixed-
Rets, or Mixed.

Series versus vectors
Vector operations check, at run time, that the operands have the same length. The
same behaviour would be hard to enforce for series. On one hand, each series can
have a different first-available date. On the other hand, even series with the same

THE AUSTRA LANGUAGE

38

frequency could have reported values on different days of the week or the month,
and still, it could be interesting to mix them.

So, the rules for mixing two series in an operation are:

• They must have the same frequency, and their frequencies are checked at
runtime.

• However, they may have different lengths. If this is the case, the shorter length is
chosen for the result.

• The points of the series are aligned according to their most recent points.
• The list of dates assigned to the result series is chosen arbitrarily from the first

operand.

Class methods
There is only one constructor for series:

series::new Creates a linear combination of series.

The first parameter of series::new must be a vector of weights, and from that point
on, a list of series must be included. This class method creates a linear combination
of series. The length of the weights vector can be equal to the number of series or the
number of series plus one. For instance:

series([0.1, 0.9], aapl, msft);

-- The above code is equivalent to this:

0.1 * aapl + 0.9 * msft

If we add another item to the vector, it will act as an independent term:

series([0.5, 0.1, 0.9], aapl, msft);

-- The above code is equivalent to this:

0.5 + 0.1 * aapl + 0.9 * msft

Series properties
These properties are applied to instances of series:

acf The Autocorrelation Function (ACF).

amax Gets the maximum of the absolute values.

amin Gets the minimum of the absolute values.

count Gets the number of values in the series.

dates Dates of the series as a vector of dates.

TIME SERIES

39

fft Gets the Fast Fourier Transform of the values.

first Gets the first point in the series (the oldest one).

fit Gets a vector with two coefficients for a linear fit.

kurt Get the kurtosis.

kurtp Get the kurtosis of the population.

last Gets the last point in the series (the newest one).

linearFit Gets a line fitting the original series.

logs Gets the logarithmic returns.

max Get the maximum value from the series.

mean Gets the average of the values.

min Get the minimum value from the series.

movingRet Gets the moving monthly/yearly return.

ncdf Gets the percentile of the last value.

pacf The Partial Autocorrelation Function (ACF).

perc Gets the percentiles of the series.

random Creates a random series from a normal distribution.

rets Gets the linear returns.

skew Gets the skewness.

skewp Gets the skewness of the population.

stats Gets all statistics in one call.

std Gets the standard deviation.

stdp Gets the standard deviation of the population.

sum Gets the sum of all values.

type Gets the type of the series.

var Gets the variance.

THE AUSTRA LANGUAGE

40

varp Gets the variance of the population.

values Gets the underlying vector of values.

Series methods
These are the methods supported by time series:

all Checks if all items satisfy a lambda predicate.

any Checks if exists an item satisfying a lambda predicate.

ar Calculates the autoregression coefficients for a degree.

arModel Creates a full AR(p) model.

autocorr Gets the autocorrelation given a lag.

corr Gets the correlation with a series given as a parameter.

correlogram Gets all autocorrelations up to a given lag.

cov Gets the covariance with another given series.

ewma Calculates an Exponentially Weighted Moving Average.

filter Filters points by values or dates.

indexOf Returns the index where a value is stored.

linear Gets the regression coefficients given a list of series.

linearModel Creates a full linear model given a list of series.

ma Calculates the moving average coefficients for a degree.

maModel Creates a full MA(q) model.

map Pointwise transformation of the series with a lambda.

movingAvg Calculates a Simple Moving Average.

movingNcdf Calculates a Moving Normal Percentile.

movingStd Calculates a Moving Standard Deviation.

ncdf Gets the normal percentile for a given value.

stats Gets monthly statistics for a given date.

TIME SERIES

41

zip Combines two series using a lambda function.

Operators
These operators can be used with time series:

+ Adds two series, or a series and a scalar.

- Subtracts two series, or a series and a scalar.
Also works as the unary negation.

* Multiplies a series and a scalar for scaling values.

/ Divides a series by a scalar.

.* Pointwise series multiplication.

./ Pointwise series division.

Indexing and slicing
Points in a series can be accessed using an index expression between brackets:

aapl[0];

aapl[appl.count - 1].value = aapl.last.value;

aapl[^2] = aapl[aapl.count - 2]

Series also supports extracting a slice using dates or indexes. In the first case, you
must provide two dates inside brackets, separated by a range operator (..), and one
of the bounds can be omitted:

aapl[jan20..jan21];

aapl[jan20..15@jan21];

aapl[jan20..];

aapl[..jan21]

The upper bound is excluded from the result, as usual. Date arguments in a series
index do not support the caret (^) operator for relative indexes. When using numeri-
cal indexes in a slice, the behaviour is like the one of vectors:

aapl[1..aapl.count - 1].count = aapl[1..^1].count

Linear fitting
When you face a time series for the first time, the first thing you want is to decompose
the series into all its identifiable components. The series may be the sum of a linear
or quadratic process, it may have seasonal variations or any kind of periodic

THE AUSTRA LANGUAGE

42

variation, it may show signs of a stochastic process such as an autoregressive or
moving average process and, of course, there will be almost always random noise in
the raw data.

The most easily identifiable component is perhaps a linear trend in the data. Look at
the chart for this raw series with monthly sampling:

If you apply the fit method to this series, the answer will be two numbers in a real
vector:

aaa.fit

-- This is the answer:

ans ∊ ℝ(2)
0.134716 -97404.4

The first number in the vector is the slope, and the second number is the intercept,
that is, the value when the argument of the corresponding line is zero. If you wanted
to look at the inferred line, you could execute the linearFit property on aaa, which
creates a series with the same date, but with values from the fitted line. You can also
subtract aaa.linearFit from aaa, to see the part of the data that cannot be ex-
plained by a simple line model:

Austra uses Ordinary Least Squares (OLS) to find the coefficients of the fitting line.

TIME SERIES

43

Linear models
If your data cannot be easily explained using a simple line, you could try another
approach: explaining a series as a linear combination of other existing series. Let us
say that we want to explain the aaa series using three other series. This is the for-
mula we need:

aaa.linearModel(aab, aac, aad)

An instance of the LinearModel class is created, and this is how the Austra Desktop
application shows it:

The most important data is contained in the first line of the answer:

𝑎𝑎𝑎 = −803.12 + 0.858 ∗ 𝑎𝑎𝑏 + 1875.52 ∗ 𝑎𝑎𝑐 + 0.308 ∗ 𝑎𝑎𝑑

That is how the series to be explained can be approximated with the other three pre-
dicting series. Coefficients are calculated to minimise the OLS of the difference be-
tween the prediction and the original.

The second line give us the t-statistics for the relevance of each coefficient. Note, for
example, that the most relevant coefficient is the one corresponding to the aab se-
ries, even though the coefficient for aac is greater. The reason is that values from aac
are smaller than values from aab. The next line gives us the R2 statistics, also known
as goodness of fit, which is the quotient between the explained variance and total
variance. The closer R2 is to one, the better the explanation is.

Finally, the application shows a chart including the original and the predicted series.

In case you only need the coefficients of the model, you can call the linear method
on aaa, using the same parameters as before. linear just returns a vector with the
coefficients used in the model.

THE AUSTRA LANGUAGE

44

Statistics on time series
A fair share of the properties and methods implemented by series have to do with
statistics, either of the whole series or of partial samples from the series. Most of
these properties and methods are shared with real vectors and sequences, for obvi-
ous reasons.

The next few sections deal with time series features that compute statistics for a time
series.

Accumulators
The stats property returns an object from the C#’s Accumulator class that holds
statistics on all samples from the series.

The Accumulator class defined by the Austra library, implements a running accu-
mulator that calculates and updates the most important statistics estimators as we
keep adding values from a dataset, using the well-known Welford algorithm. Our im-
plementation of Welford’s algorithm takes advantage of SIMD instructions from the
CPU, when available. Since it is a fast implementation, the result returned by the
stat property of a series is always computed when the time series is created. Per-
sistent series are created when the Austra Desktop application starts up, or when a
series is retrieved for the first time from an external service or database. This way,
you can always call stats without concerns about efficiency, and the same is valid
on any property derived from the running accumulator.

Most of the properties of stats are also available as direct properties of the series, for
convenience. They are:

count Gets the number of values in the series.

kurt Get the kurtosis.

kurtp Get the kurtosis of the population.

max Get the maximum value from the series.

mean Gets the average of the values.

min Get the minimum value from the series.

skew Gets the skewness.

skewp Gets the skewness of the population.

var Gets the variance.

varp Gets the variance of the population.

TIME SERIES

45

Remember that most of all these properties are just estimators, and that their accu-
racy depends on the number of samples. Skewness and kurtosis, for example, needs
more than a thousand samples for a ballpark estimate, at least according to my own
experience.

One nice property about running accumulators is that you can combine two of them
easily and efficiently using the plus operator:

aaa.stats + aab.stats

A stats property is also implemented by real and integer vectors and sequences.

Moving time windows
A series like our friend aaa is classified as a raw series. It starts with low values, and,
despite random oscillations, it has a definite upward trend. If we take the mean of
the first half of the series, it will be wildly different from the other half’s mean. The
average value is not a significant property of the series.

Part of the problem has to do with the fact that aaa probably represents a random
walk. The most probable underlying process that generates a series like this works
by throwing a die at each step and deciding how much we must increase or decrease
the current value. We can focus, however, on how these variations behave, by trans-
forming the series into a series of returns. Series have two properties for this task:
rets, for linear or ordinary returns, and logs, for logarithmic returns. This chart
shows the logarithmic returns of aaa:

THE AUSTRA LANGUAGE

46

Now we have a series with a uniform mean throughout its lifetime, but another prob-
lem has surfaced. The time range we sample has a significant impact on the variation
in the returns. In other words, different segments have different standard deviations
or variances.

That is the reason why there are series methods like movingAvg, movingStd, and
movingNcdf that calculate those statistics over a sliding window of samples. Each of
these methods requires the number of samples to define the moving window. Since
aaa is a monthly series, the following chart displays the accumulated standard devi-
ation for a moving period extending from one year.

The related property, movingRet, can be used on raw and return series and averages
the return according to the sampling frequency of the series. In this case, we do not
supply the size of the sliding window, but it is inferred from its type and frequency.

Autocorrelation and partial autocorrelation
There are two important diagnostic functions on series: the autocorrelation function,
also known by the acronym ACF, and the partial autocorrelation function, also
known as PACF.

The ACF is defined as the Pearson correlation between a signal and a delayed copy
of the signal. The argument of the function is the delay between the samples, and
since we are dealing with discrete signals, the type of the argument is an integer
value.

There are formulas that work better with stationary series, that is, series with uni-
form statistical properties, widely speaking. Most financial series are not stationary
when the sampling time is long enough, as we will see soon. Our algorithm does not
assume stationarity and is based on the Wiener-Khinchin theorem, which relates the
autocorrelation function with the power spectral density via the Fourier transform.
Internally, Austra calculates a Fast Fourier Transform on a padded version of the se-
ries, using the next available power of two size for speed.

TIME SERIES

47

The Partial Autocorrelation Function, or PACF, is closely related but must not be con-
fused with the ACF. The PACF measures the direct correlation between two lags,
without accounting for the transitive effect of any intermediate lags. Our PACF im-
plementation calculates the ACF as a prerequisite, and then performs the Levinson-
Durbin algorithm on the ACF to remove those spurious effects from the lags in-be-
tween.

Autoregressive models
The autoregressive model is one of the simplest stochastic models that can generate
a time series. If we denote as 𝑥𝑡 the value of a series at a time or step 𝑡, an autoregres-
sive model of order 𝑝 is a process generated by this formula:

𝑥𝑡 = ∑𝜑𝑖𝑥𝑡−𝑖 + 𝜀𝑡

𝑝

𝑖=1

The 𝜀𝑡 term is a random value taken from any distribution, not necessarily a standard
one. It is only required that the mean of 𝜀𝑡 be zero. If the order of the model, 𝑝, is zero,
what remains is just white noise. And things start getting interesting when 𝑝 > 0, be-
cause each term start been influenced by a subset of the preceding terms in the se-
ries.

The easiest way to generate an autoregressive model for testing is using class meth-
ods from real sequences. What series provide are methods for estimating parame-
ters for an autoregressive model, assuming that the series has been generated by
such a model. The arModel method estimates coefficients and includes some useful
statistics with the output. The ar method is a leaner version of arModel that only
returns coefficients. Finally, you can use the pacf property to check if an autoregres-
sive process would be a good guess about how the series has been generated.

Let us take as example our good-old aaa series:

This is not a stationary series, and it looks more like a random walk. But an auto-
regressive process can yield random walks instead of stationary series when the
sum of the coefficients is high enough. We will start by calculating the Partial

THE AUSTRA LANGUAGE

48

Autocorrelation Function of the samples we have. Theory says that partial autocor-
relations for an autoregressive model fall to zero after a few lags. And that is just
what we see when we plot the full PACF of aaa:

The return type of properties like acf and pacf is series<int>: instead of the usual
pairs containing date/value, here we return pairs containing lag/value. Unfortu-
nately, the control used for the chart does not have all the whistles and bells we
would want. So, lets manually zoom on the first lags, to see what is happening.

Since series stores their values in reverse order, what we really want is a slice from
the end of a series, so we will evaluate this formula:

aaa.pacf[^20..^0]

And this is the new chart we get:

The first value of both the ACF and the PACF functions corresponds always to the lag
zero, so it is always one. The value for the lag one is near one, and then, all the rest
of the partial autocorrelations are negligible. We will bet that we can model the series
with an autoregressive model of degree 1, and we are pretty sure that the coefficient
will be high enough to generate a random walk instead of a stationary series. We will
use the more nuanced method arModel to get as information as possible:

aaa.arModel(1)

TIME SERIES

49

And voilà, here we have the estimated model:

As we already suspected, the coefficient is greater than unity. The r2 property of the
model is the same goodness of fit we have already seen with linear models. It is the
quotient of the explained variance over the total variance, and it is high enough for
the model to be considered a good one.

The chart plots both the original series and the “predicted” one. As a word of caution,
don’t be fooled by the word “prediction”: what we are forecasting is just one step
forward, assuming the historically attested levels. It would be impossible, as it
stands to reason, to generate the whole series from an initial level and the auto-
regressive law.

 Note

Austra estimates coefficients for AR models using the so-called Yule-Walker equa-
tions.

Moving Average models
Another common process that generates a time series is the algorithm known as
Moving Average. A Moving Average process of order 𝑞, often referred as MA(q), is de-
fined by the following formula:

𝑥𝑡 = 𝜇 + ∑𝜃𝑖

𝑞

𝑖=1

𝜀𝑡−𝑖 + 𝜀𝑡

This is a very different beast than the autoregressive models we have already seen.
All the 𝜀𝑖 terms still refer to random variables centred around zero. We also have a
new term, 𝜇, which is interpreted as the mean of the series. What makes an MA
model different from an AR model is that what is propagated to successive steps is
not the actual value at a past time, but the error term introduced in a previous step.

Pure Moving Average series are stationary series. Since I do not have a good real can-
didate at hand, I will use a transformed series as the source of the MA example. I
have an aac series, and I will take its linear returns as my original samples. Even

THE AUSTRA LANGUAGE

50

then, the resulting series is not a stationary one, so the match will not be perfect.
This is how I get the linear returns from a time series:

aac.rets

And this is the corresponding chart:

For MA series, we must use the ACF instead of the PACF. These are the fifty first lags
of the ACF:

This time, the cutoff is not as clear as before. Let us start by trying an MA(2) model:

It could have been worse. The r2 value is nothing to write home about. Note that,
this time, we also have the 𝜇 parameter for the mean of the series. We could keep

TIME SERIES

51

raising the number of degrees of the model for a better match, but we would soon
meet diminished returns. Remember that the original series was not a stationary
one.

Note

MA models are way harder to estimate than the simpler AR model. They depend on
past “errors,” which are not directly observable but must be inferred from the sam-
ples.

53

Vectors
AUSTRA PROVIDES DOUBLE-PRECISION vectors, identified by
the class vec, complex double-precision vectors, cvec,
vectors of integers, ivec, and date vectors, dvec. All
these data types are implemented using dense storage.

Real vectors
A vector is constructed by listing its components inside
brackets:

[1, 2, 3, 4]

Commas are mandatory for separating items, and the compiler always ignores white
space and line feeds.

Bracket lists can be also used to concatenate the content of several vectors, and you
can add scalars to the mix:

let v1=[1, 2], v2=[3, 4];

-- Returns a vector with 4 items.

[v1, v2];

-- This also is accepted:

[[1, 2], v2];

-- Scalars can also be added.

[0, v1, pi, v2, tau];

Class methods
Vectors can also be created using these class methods:

vec::new Overloaded constructor.

vec::ones Creates a vector filled with ones.

vec::random Creates a vector with random values from a uniform distri-
bution.

vec::nrandom Creates a vector with random values from a normal stand-
ard distribution.

These are the overloads supported by vec::new:

-- Creates a vector with 10 items, all of them zeros.

vec::new(10);

-- Remember that ::new can be omitted!

vec(10);

THE AUSTRA LANGUAGE

54

-- Creates a vector like [1 2 3 4 5 6 7 8 9 10]

vec(10, i => i + 1)

The last example shows how to create a vector using a lambda function parameter.
This is a more sophisticated example of using a lambda to initialise items in a vector:

-- Mimics a periodic function.

vec(1024, i => sin(i*pi/512) + 0.8*cos(i*pi/256))

vec::new can also be used to create a linear combination of vectors:

vec([0.5, 0.1, 0.7, 0.2], v1, v2, v3)

The first parameter contains weights, and the remaining parameters are the vectors
that will be linearly combined. If there is an extra value in the weights, as in the ex-
ample, it is used as an independent term. The above expression is equivalent to this
one:

0.5 + 0.1 * v1 + 0.7 * v2 + 0.2 * v3

Please note that the parser can detect some code patterns and optimise expressions
automatically. For instance, for vectors, the parser recognises these patterns:

vector1 * scalar + vector2;

scalar * vector1 + vector2;

scalar1 * vector1 + scalar2 * vector2;

All these expressions are reduced to calls to one of the overloads of either Multi-
plyAdd or Combine2. These methods are internally optimised to use a single tempo-
rary buffer, instead of the two buffers of a naïve implementation, and both use FMA
fused operations when available. Of course, the method underlying the above pre-
sented vec::new constructor is even better optimised and runs several times faster
than even the better versions of lineal composition.

Another experimental optimisation substitutes non-destructive operators by opera-
tions that directly modify the internal buffer of one of the operands:

vec::random(10) + vector2;

It does not matter where vector2 comes from. The first operand is a “new” vector,
created on the fly for this formula, and its buffer will not survive beyond this formula.
The compiler reckons it is safe to substitute the non-destructive addition with a ver-
sion that leaves the result in the buffer of the first operand.

Even negations can be optimized with an in-place operation when acting on a non-
shared object:

VECTORS

55

-(vec::random(10) + vector2);

Since the result of the inner sum is already recognised as a non-shared object, the
usually non-destructive negation is substituted by its destructive version.

Note

The in-place operations optimisation is done by the compiler instead of the runtime
because this way it is performed on the safe side. We cannot destroy the buffer of a
shared instance, so we check first if the candidate to the in-place operation is a non-
shared instance, as determined by the compiler. Excluded expressions include func-
tion parameters, let and session variables.

Vector properties
Properties and methods or vectors are like the ones from series. As a rule, almost all
code in series that do not need to take dates into account, is implemented via the
corresponding vector code, which is heavily optimised, and hardware accelerated.
These are the properties supported by a vector instance:

abs Gets a new vector with absolute values.

acf The Autocorrelation Function (ACF).

amax Gets the maximum of the absolute values.

amin Gets the minimum of the absolute values.

distinct Gets a new vector with the unique values from the original.

fft Gets the Fast Fourier Transform of the values.

first Gets the first item in the vector.

last Gets the last item in the vector.

length Gets the number of values in the vector.

max Get the maximum value from the vector.

mean Gets the average of the values in the vector.

min Get the minimum value from the vector.

norm Gets the Pythagorean norm of the vector.

pacf The Partial Autocorrelation Function (ACF).

plot Shows the vector in a chart.

THE AUSTRA LANGUAGE

56

prod Multiplies all items in the vector.

reverse Creates a new vector with items in reverse order.

sort Gets a new vector with its items sorted.

sortDesc Gets a new vector with items sorted in descending order.

sqr Gets the scalar product of the vector with itself.

sqrt Gets a new vector with the square root of each item.

stats Gets all statistics in one call.

sum Gets the sum of all values.

Vector methods
These are the methods supported by a vector instance:

all Checks if all items satisfy a lambda predicate.

any Checks if exists an item satisfying a lambda predicate.

ar Gets the autoregression coefficients for a given p.

arModel Creates a full AR(p) model.

autocorr Gets the autocorrelation given a lag.

correlogram Gets all autocorrelations up to a given lag.

filter Filters items by value.

find Like filter but returns a sequence with the indexes.

indexOf Returns the first index where a value is stored.

linear Gets the regression coefficients given a list of vectors.

linearModel Creates a full linear model from a list of vectors.

ma Estimates coefficients for an MA(q) model.

maModel Creates a full MA(q) model.

map Pointwise transformation of the items in a vector.

reduce Reduces all items in a vector to a single value.

VECTORS

57

zip Combines two vectors using a lambda function.

Vector operators
Real-valued vectors supports the basic repertoire of operators:

+ Adds two vectors, or a vector and a scalar.

- Subtracts two vectors, or a vector and a scalar.
Also works as the unary negation.

* Multiplying two vectors represents the inner vector product, returning a
number. A vector multiplied by a scalar is a vector scaling operation.

/ Divides a vector by a scalar.

.* Pointwise vector multiplication.

./ Pointwise vector division.

^ Outer product for two vectors, returning a matrix.

The outer product of vectors 𝑥𝑖 and 𝑦𝑗 returns the matrix with components 𝑚𝑖,𝑗 =

𝑥𝑖𝑦𝑗. This expression call:

[1,2,3]^[4,5,6]

computes this matrix:

ans ∊ ℝ(3⨯3)
 4 5 6

 8 10 12

12 15 18

Complex vectors
There's no special syntax for complex vector literals, but complex vectors can be
easily created using the cvec::new class method and one or two vector construc-
tors:

cvec::new([1, 2, 3, 4], [4, 3, 2, 1]);

-- ::new can be omitted.

cvec([1, 2, 3, 4], [4, 3, 2, 1])

These class methods are available for creating complex vectors:

cvec::new Overloaded constructor (see below).

THE AUSTRA LANGUAGE

58

cvec::random Creates a complex vector with random values from a uni-
form distribution.

cvec::nrandom Creates a complex vector with random values from a normal
standard distribution.

These are the overloads supported by cvec::new:

-- Creates a complex vector with 10 zeros.

cvec(10);

-- Creates a complex vector from one real vector.

cvec([1, 2, 3]);

-- Creates a complex vector from two real vectors.

cvec([1, 2, 3], [3, 2, 1]);

-- Creates a complex vector with a lambda function.

cvec(10, i => polar(2π*i/10));

-- The lambda function includes access to the complex vector.

cvec(100, (i, v) => polar(2π*i/10) - 0.01 * i * v{i-1})

Complex vector properties
These are the properties supported by a complex vector instance:

amax Gets the maximum of the absolute values.

amin Gets the minimum of the absolute values.

distinct Gets a new vector with the unique values from the original.

fft Gets the Fast Fourier Transform of the values.

first Gets the first item in the vector.

imag Gets the imaginary components as a vector.

last Gets the last item in the vector.

length Gets the number of values in the vector.

magnitudes Gets magnitudes as a vector.

mean Gets the average of the values in the vector.

norm Gets the Pythagorean norm of the vector.

phases Gets phases as a vector.

plot Shows the vector in a chart.

prod Multiplies all items in the vector.

VECTORS

59

real Gets the real components as a vector.

reverse Creates a new vector with items in reverse order.

sqr Gets the scalar product of the vector with itself.

sum Gets the sum of all values.

Complex vector methods
These are the methods supported by a complex vector instance:

all Checks if all items satisfy a lambda predicate.

any Checks if exists an item satisfying a lambda predicate.

filter Filters items by value.

find Like filter but returns a sequence of the indexes.

indexOf Returns the first index where a value is stored.

map Pointwise transformation of the items in a vector.

mapReal Pointwise transformation of the items in a vector.
Returns a real vector.

reduce Reduces all items in a vector to a single value.

zip Combines two vectors using a lambda function.

Complex vector operators

Complex vectors support the same operators as real-valued operators, except for
the outer product ^. On the other hand, they add support for complex vector conju-
gation using a unary suffix operator:

' Unary suffix operator for complex vector conjugation.

Complex vector conjugation inverts the sign of each imaginary component in the vec-
tor. The inner product of two complex vectors conjugates the second vector operand.

Most of the optimisations allowed for real vectors are also available for complex vec-
tors.

Integer vectors
Integer vectors are also supported, using the ivec class.

THE AUSTRA LANGUAGE

60

ivec::new Overloaded constructor.

ivec::ones Creates a vector filled with ones.

ivec::random Creates a vector with random values from a uniform distri-
bution.

ivec::random has three overloaded variants:

-- Ten items. Values between 0 and int.MaxValue - 1.

ivec::random(10);

-- Values between 0 and 999.

ivec::random(10, 1000);

-- Values between -10 and 9.

ivec::random(-10, 10)

Integer vector literals can be created using this notation:

-- Integer vector creation.

let v1 = [int: 1, 2, 3, 4];

-- Integer vector concatenation.

[int: v1, 5, v1.reverse];

Integer vector properties
Integer vectors support these properties:

abs Gets a new vector with absolute values.

distinct Gets a new vector with the unique values from the original.

first Gets the first item in the vector.

last Gets the last item in the vector.

length Gets the number of values in the vector.

max Gets the maximum value from the vector.

min Gets the minimum values from the vector.

prod Multiplies all items in the vector.

reverse Creates a new vector with items in reverse order.

sort Sorts the vector in ascending order.

sortDesc Sorts the vector in descending order.

stats Gets all statistics in one call.

VECTORS

61

sum Gets the sum of all values.

toVector Converts the integer vector into a double vector.

Integer vector methods
These are the methods for integer vectors:

all Checks if all items satisfy a lambda predicate.

any Checks if exists an item satisfying a lambda predicate.

filter Filters items by value.

find Like filter but returns a sequence with the indexes.

map Pointwise transformation of the items in another integer
vector.

mapReal Pointwise transformation of the items into a real vector.

reduce Reduces all items in a vector to a single integer value.

zip Combines two integer vectors using a lambda function.

Indexing and slicing
Individual values from vectors are accessed using its position, starting from zero,
inside brackets:

vec[0];

vec[vec.length - 1]

A segment or slice can be extracted as another vector by using this notation:

vec[1..vec.length - 1]

The above expression removes the first and the last element from a vector. The upper
bound is excluded.

The caret (^) can be used in indexes and segments, to count positions from the end.
For instance, this expression returns the next to last item of a vector:

vec[^1]

These equalities hold:

vec[1..^1] = vec[1..vec.length - 1];

THE AUSTRA LANGUAGE

62

vec[^5..^2].length = 3

Vectors and series also support safe indexers. With normal indexers, like v[1000],
an out-of-range reference throws an exception and interrupts the evaluation of the
formula. If braces are used instead of brackets, and out-of-range reference returns
0.0 and it is considered as a valid use. For instance, the following expression returns
zero:

[1, 2, 3, 4]{1000}

Safe indexers are useful when used inside lambda functions. This expression cre-
ates a vector holding the first 30 Fibonacci numbers:

vec(30, (i, v) => max(1, v{i-1} + v{i-2}))

The Fast Fourier Transform
AUSTRA provides a Discrete Fourier Transform for real and complex vectors, se-
quences, and series. The core result of the transformation, which is implemented by
the fft property is a complex vector, but this vector is commonly wrapped inside a
FftModel class instance, which provides additional helping methods and properties
and, among them, a method for inverting the transform and getting back the original
samples.

The other function of FftModel is to act a semantic marker on behalf of any
application that is using the AUSTRA parser. When you execute something like
aaa.fft in the Austra Desktop application, where aaa is a time series, you get a
special view for the Fast Fourier Transform based on the returned FftModel:

The first line tells us we are seeing a Fast Fourier Transform that has transformed
583 real samples into a complex spectrum containing 291 complex values. Since
there is not a pretty and effective way to draw those complex values, the following
chart shows the amplitudes of those values, and gives us the option to also see their
phases.

VECTORS

63

If we immediately type and execute ans.inverse, we will get not the original series,
because the date arguments have been discarded by the FFT, but a vector with the
original values or coordinates of the time series. The key in the reconstruction is that
the FftModel keeps track of the fact that the FFT was created from a vector of reals
instead of from a vector of complex numbers.

Let us check now how our FFT handles a complex vector. For making things a little
more interesting this time, we are going to start with this formula:

(cvec::nrandom(1024) + cvec(1024, i => 0.6*sin(i*0.2))).fft

There is a noisy component, based on a normal distribution, and then we add a
shameless periodic function, affecting just the real part of the complex vector. The
first thing we can predict is that the FFT will not have a big zero component: the zero
component of any Discrete Fourier Transform is known as the DC, or direct current
component, in electronic jargon, because it represents the mean of the samples. Our
new mean will be insignificant because the normal distribution generates both posi-
tive and negative terms, and the corresponding plot confirms our suspicions:

This time, the number of samples in the transform is the same as the number of orig-
inal samples. It is immediately obvious that there is a periodic component in the sam-
ples, which shows as two symmetric peaks at the beginning and end of the spectrum.
And, if we immediately execute ans.inverse, we get back the original complex vec-
tor with all its samples.

FFT properties and indexers
For the sake of clarity, let us group all properties available for FFT models:

amplitudes Gets the amplitudes, or magnitudes, of the transformation
numbers.

inverse Performs the inverse transformation for the full spectrum. The
algorithm used depends on the kind of source of the transfor-
mation.

THE AUSTRA LANGUAGE

64

length Number of samples in the transformation result.

phases Gets the phases of the transformation numbers.

values The full spectrum of the transformation, as a complex vector.

The FftModel class also implements an indexer and allows the use of slices and rel-
ative indexes.

65

Sequences
SEQUENCES PROVIDES MOST of the operations from real
and complex vectors but avoiding the storage. Sequences
are like enumerable types in C# with LINQ and are a req-
uisite for any functional language.

AUSTRA supports three kinds of sequences: seq, for
real valued sequences, cseq for complex ones,
and iseq, for integer sequences.

Double-valued sequences as
light vectors
Let's say we want to calculate factorials. AUSTRA is a functional language, so we
don't have explicit loops. We could, however, do this with a vector:

vec(10, i => i + 1).prod

The above code works fine, but it forces the library to allocate one array of ten items.
This is the alternative, using a sequence:

seq(2, 10).prod

Since the sequence's values are generated only by demand, there's no need for the
internal storage.

Sequence constructors
These are the class methods for seq:

seq::new Creates a sequence, either from a range, a range, and a
step, or from a vector or matrix. See examples below.

seq::random Creates a sequence of random values.

seq::nrandom Creates a sequence of random values, using a normal dis-
tribution.

seq::ar Creates a sequence using an autoregressive process.

seq::ma Creates a sequence using a Moving Average process.

seq::repeat Creates a sequence repeating a value.

seq::unfold Generate values from a seed and a generating function.

THE AUSTRA LANGUAGE

66

This code fragment shows some of the available constructors for sequences:

seq(1, 10); -- Numbers from 1 to 10.

seq(10, 1); -- The inverted sequence.

seq::new(1, 10); -- ::new was omitted before.

seq(0, 128, τ); -- A uniform grid with 128 intervals.

seq(v); -- A sequence from a vector.

seq([sqrt(2), e, π, τ]);

seq(v1^v2); -- A sequence from a matrix.

seq::random(10); -- A sequence with 10 random values.

seq::nrandom(10); -- A sequence with 10 Gaussian random values.

seq::nrandom(10, 2) -- Ten normal samples with variance = 2.

Real sequences created with just a lower and an upper bound are always based on
integer bounds. For instance, these two expressions represent the same real se-
quence:

seq(1, 10); -- Numbers from 1 to 10.

seq(1.5, 10.6); -- Numbers from 1 to 10, too.

The reason for this rule is that these sequences have always one unit as their step. It
is easier to reason about their behaviour knowing that their boundaries always are
integer values.

There are two additional class methods for generating autoregressive, AR(p),
and moving average, MA(q), sequences:

-- An autoregressive (AR) process of order three.

seq::ar(1000, 1, [0.1, 0.05, 0.01]);

-- A moving average (MA) process of order three.

-- The first term in the vector is the model's mean.

seq::ma(1000, 1, [0, 0.1, 0.05, 0.01])

You can materialise the content of a sequence as a vector using the toVector prop-
erty:

seq::random(10).toVector

The unfold sequence generator

Another class method for creating sequences is seq::unfold, which has three vari-
ants:

-- Powers of 2, from 2 to 1024.

seq::unfold(10, 2, x => 2x);

-- Maclaurin series for exp(1).

seq::unfold(100000, 1, (n, x) => x / (n + 1)).sum + 1;

-- Real-valued Fibonacci sequence.

seq::unfold(50, 1, 1, (x, y) => x + y);

SEQUENCES

67

The unfold sequence generator is important for the language since it can express
iterative behaviour in a language with no explicit loops and conditionals. The alter-
native to iteration is recursion, which is also provided by AUSTRA, but a recursive
function is almost always more expensive, even in the presence of tail optimisations.

Let us consider, for instance, how we would write a function for the greatest com-
mon divisor. When learning about function definitions, we saw that we could define
a recursive function for this task:

-- The recursive version

def gcd1:"Recursive GCD"(a, b: int): int =

 let rm = a % b in

 iff(rm = 0, b, mcd(b, rm))

This is a fine recursive definition that even is amenable to tail recursion optimisation.
Now compare with the iterative alternative:

-- The iterative version

def gcd2:"Iterative GCD"(a, b: int): int =

 iseq::unfold(10000, a, b, (x, y) => x % y).while(x => x > 0).last

Even though it looks more verbose, the second definition is almost twice faster than
the recursive definition. Note, however, that we have used the class iseq instead of
seq, so the property last directly returned an integer value. We could have kept seq
by simply adding toInt after calling last:

def gcd3:"Iterative GCD"(a, b: int): int =

 seq::unfold(10000, a, b, (x, y) => x % y)

 .while(x => x > 0).last.toInt

Still, the advantage of the iterative definition will be huge compared to the recursive
definition.

Note

Two things to consider:

• If we had not included the while method, every call to that unfold sequence would
end in failure as soon as the algorithm would have tried to divide by zero. The
while method avoids that problem and gives us the value we need.

• The unfold generator requires a first parameter stating how many values to cre-
ate. We could have devised a variant of unfold for creating an infinite-length se-
quence. I have preferred, however, to put the burden of picking a high enough
value on your shoulders. It is security against convenience.

Methods and properties

These are the properties supported by all sequences of real values:

THE AUSTRA LANGUAGE

68

acf The Autocorrelation function.

distinct Select unique values, with no predefined order.

fft Calculates a Fast Fourier Transform.

first Gets the first term of the sequence.

last Gets the last term of the sequence.

length Gets the number of elements in the sequence.

max Get the maximum value in the sequence.

min Get the minimum value in the sequence.

pacf The Partial Autocorrelation function.

plot Plots the sequence.

prod Multiplies all values in the sequence.

sort Sorts values in ascending order.

sortDesc Sorts values in descending order.

stats Gets all statistic moments of the sequence.

sum Sums all values in the sequence.

toVector Materialises the sequence into a vector.

These are the methods that can be used with a sequence of real values:

all Checks if all items in the sequence satisfy a predicate.

any Checks if there is an item in the sequence satisfying a predi-
cate.

ar Estimates coefficients for an AR(p) model.

arModel Creates a full AR(p) model.

filter Returns items of the original sequence satisfying a predicate.

ma Estimates coefficients for an MA(q) model.

maModel Creates a full MA(q) model.

SEQUENCES

69

map Transforms items with the help of a lambda function.

reduce Conflates all values in a sequence using a lambda.

until Returns a prefix of a sequence until a value satisfying a predi-
cate is found.

while Returns a prefix of a sequence while values satisfy a predicate.

zip Combines two sequences using a lambda function.

As seen before, the while method excludes from its returning sequence the first
value satisfying its predicate. On the contrary, until includes that very value in the
returning sequence.

Sequence operators

Sequence’s operators mimics most of vector's operators.

seq(1, 10) * seq(10, 1) -- The dot product.

For instance, simple operators can be used to change the underlying distribution of
a random sequence.

seq::random(100) * 2 - 1;

-- Check the moments of the above distribution.

(seq::random(100) * 2 - 1).stats

 Note

Unary operators for sequences could, in theory, be implemented using map, and bi-
nary operators can also be written using zip.

However, in most cases, having an explicit operator results in a faster implementa-
tion. It is most evident for sequences backed by a vector, but it also happens for other
kinds of sequences. For instance, when a range or grid sequence is negated, you can
implement the result using another range or grid sequence.

Integer sequences
Integer sequences are represented by the iseq class.

Class methods
These are the class methods supported by iseq:

iseq::new Creates a sequence, either from a range, a range, and a step,
or from an integer vector.

THE AUSTRA LANGUAGE

70

iseq::random Creates a sequence of random integers. You can pass an up-
per bound, or an interval for values.

iseq::unfold Like seq::unfold, but with integer arguments.

Methods and properties
These properties can be used with integer sequences:

distinct Select unique values, with no predefined order.

first Gets the first term of the sequence.

last Gets the last term of the sequence.

length Gets the number of elements in the sequence.

max Get the maximum value in the sequence.

min Get the minimum value in the sequence.

plot Plots the sequence.

prod Multiplies all values in the sequence.

sort Sorts values in ascending order.

sortDesc Sorts values in descending order.

stats Gets all statistic moments of the sequence.

sum Sums all values in the sequence.

toVector Materialises the sequence into a vector.

These are the available methods:

all Checks if all items in the sequence satisfy a predicate.

any Checks if any item in the sequence satisfies a predicate.

filter Returns items of the original sequence satisfying a predicate.

map Transforms items with the help of a lambda function.

mapReal Transforms items with the help of a lambda function.

reduce Conflates all values in a sequence using a lambda.

SEQUENCES

71

until Returns a prefix of a sequence until a value satisfying a pred-
icate is found.

while Returns a prefix of a sequence while values satisfy a predi-
cate.

zip Combines two sequences using a lambda function.

This example shows how to calculate the Collatz sequence using integer sequences:

let collatz(n: int) =

 iseq::unfold(1000000, n, x => iff(x.even, x / 2, 3x + 1))

 .until(x => x = 1);

collatz(137)

Though the generator is created with a big enough upper limit, the sequence stops
when a 1 is generated. The until method can also be written this way:

let collatz(n: int) =

 iseq::unfold(1000000, n, x => iff(x.even, x / 2, 3x + 1))

 .until(1)

Complex sequences
Complex sequences can also be used, with the cseq class.

Class methods
These are the class methods supported by cseq:

cseq::new Creates a sequence, either from a complex interval, or from a
complex vector.

cseq::random Creates a sequence of random values from a uniform distribu-
tion.

cseq::nrandom Creates a sequence of random values with a standard normal
distribution.

cseq::unfold Like seq::unfold, but with complex arguments.

Methods and properties

These properties can be used with complex sequences:

distinct Select unique values, with no predefined order.

first Gets the first term of the sequence.

THE AUSTRA LANGUAGE

72

last Gets the last term of the sequence.

length Gets the number of elements in the sequence.

plot Plots the sequence.

prod Multiplies all values in the sequence.

sum Sums all values in the sequence.

toVector Materialises the sequence into a complex vector.

And these are the available methods:

all Checks if all items in the sequence satisfy a predicate.

any Checks if any item in the sequence satisfies a predicate.

filter Returns items of the original sequence satisfying a predicate.

map Transforms items with the help of a lambda function.

mapReal Transforms items with the help of a lambda function.

reduce Conflates all values in a sequence using a lambda.

until Returns a prefix of a sequence until a value satisfying a predi-
cate is found.

while Returns a prefix of a sequence while values satisfy a predi-
cate.

zip Combines two sequences using a lambda function.

Delayed execution
Sequences are modelled after .NET LINQ enumerable interfaces, and so many other
functional libraries. One of the most interesting features of these libraries is delayed
execution.

Applying a method or an operator on a sequence does not means that it will automat-
ically scan the sequence values. Let's start with a simple example:

-seq(1, 1000)

The above code first creates a sequence that will enumerate numbers from 1 to 1000.
Creating the sequence means creating a small instance of an internal class that can
be called later to yield the values in the sequence. The unary minus, however, takes

SEQUENCES

73

that sequence generator and returns another generator that yields values in de-
scending order from the interval [−10,−1]. It does not yet force the sequence enu-
meration. Enumeration takes place as the last operation, as you hit F5 on the AUS-
TRA desktop, as the application needs to print the values created by the expression.
The same would happen with this expression, which plots the sequence as a series:

(-seq(1, 1000)).plot

It is the plot method the trigger which starts the internal loop for generating all the
values. You could even intercalate another method call before the plot, without trig-
gering enumeration:

-- Sort the negated values in ascending order.

(-seq(1, 1000)).sort.plot;

-- Square values, select multiples of three and sort descending.

seq(1, 1000).map(x => x ^ 2).filter(x => x % 3 = 0).sortDesc.plot;

-- Methods like sum, prod, any,or first can also trigger evaluation.

seq(1, 100).filter(x => x % 2 = 0).map(x => x ^ 2).sum

75

Matrices
AUSTRA MATRICES ARE represented by the matrix class.
They are implemented as row-first, double precision
dense matrices.

The AUSTRA matrix class is based on three different C#
structures: Matrix, LMatrix, and RMatrix. The com-
piler takes automatically care of any conversions when
needed.

Matrix construction
A matrix can be constructed by enclosing its components inside brackets:

[1, 2, 3; 2, 3, 4; 3, 4, 5]

Rows must be separated by semicolons (;), and items in a row must be separated by
commas. This syntax does not allow writing a matrix with only one row, since the
compiler would not be able to tell it from a vector. A workaround is to write a matrix
with only one column and transpose it:

[1; 2; 3; 4]'

You can also create a new matrix by concatenating two existing matrices, or a matrix
and a vector. You can use either vertical or horizontal concatenation:

let m = [1, 2; 3, 4], v = [1, 1];

-- Horizontal concatenation (2x4 matrix).

[m, m];

-- Horizontal concatenation (2x6 matrix).

[m, m, m];

-- Horizontal concatenation (2x3 matrix).

[m, v];

[v, m];

-- Vertical concatenation (4x2 matrix).

[m; m];

-- Vertical concatenation (6x2 matrix).

[m; m; m];

-- Vertical concatenation (3x2 matrix).

-- The vector is handled as a row vector.

[m; v];

[v; m];

Class methods
These class methods are available for creating matrices:

THE AUSTRA LANGUAGE

76

matrix::new Overloaded constructor (see below).

matrix::rows Creates a matrix given its rows as vectors.

matrix::cols Creates a matrix given its cols as vectors.

matrix::eye Creates an identity matrix given its size.

matrix::diag Creates a diagonal matrix given the diagonal as a vector.

matrix::random Creates a matrix with random values from a uniform dis-
tribution.

matrix::nrandom Creates a matrix with random values from a normal
standard distribution.

matrix::lrandom Creates a lower-triangular matrix with random values
from a uniform distribution.

matrix::lnrandom Creates a lower-triangular matrix with random values
from a standard normal distribution.

matrix::cov Creates a covariance matrix given a list of series.

matrix::corr Creates a correlation matrix given a list of series.

Methods and properties
These are the properties available for matrices:

amax Gets the absolute maximum.

amin Gets the absolute minimum.

chol Calculates the matrix of the Cholesky factorisation.

cholesky Calculates the full Cholesky factorisation.

cols Gets the number of columns.

det Calculates the determinant.

diag Gets the main diagonal as a vector.

evd Calculates the Eigenvalues Decomposition.

inverse Gets the inverse of this matrix.

MATRICES

77

isSymmetric Verifies if the matrix is a symmetric one.

max Gets the maximum value from the cells.

min Gets the minimum value from the cells.

rows Gets the number of rows.

stats Returns statistics on cells.

sum Gets the sum of all values.

trace Gets the sum of the main diagonal.

And these are the supported methods:

all Checks if all cells satisfy a lambda predicate.

any Checks if exists a cell satisfying a lambda predicate.

getCol Gets a column by its index.

getRow Gets a row by its index.

map Creates a new matrix with transformed cells.

redim Creates a new matrix with a new size.

Matrix operators
These are the operators available for matrices:

+ Adds two matrices, or a matrix and a scalar.

- Subtracts two matrices, or a matrix and a scalar. It is also used as a unary
operator.

* Matrix * matrix = matrix multiplication.
Matrix * number = matrix scale.
Matrix * vector = vector transformation.
Matrix * complex vector = complex vector transformation.
Vector * matrix = vector is transposed and then transformed.
Complex vector * matrix = vector is transposed and then transformed.

.* Pointwise multiplication of two matrices.

./ Pointwise quotient of two matrices.

THE AUSTRA LANGUAGE

78

/ Divides a matrix by a scalar, but also divides either a vector or a matrix
by a matrix, for solving linear equations.

' Unary suffix operator for matrix transpose.

These examples show how to solve linear equations for a vector, using division by a
matrix:

let m = matrix::random(5) + 0.01,

 v = vec::random(5),

 answer = v / m in

 m * answer - v

Solving equations for a matrix is also possible:

let m = matrix::random(5) + 1;

matrix::eye(5) / m - m.inverse

Internally, the LU factorisation of the matrix is used for equation solving, for the gen-
eral case. When the matrix at the left is a triangular matrix, a most efficient algorithm
is used.

Optimisations
The compiler performs some optimisations for matrix operations. For instance,
these two expressions yield the same result, but the second one avoids one matrix
transpose:

let m = matrix::random(10), v = vec::random(10);

-- Transpose a matrix and then transform a vector:

m' * v;

-- Changing the order of operands avoids a transpose:

v * m;

The compiler also detects when the second matrix in a matrix multiplication is being
transposed:

let m1 = matrix::random(10), m2 = matrix::random(10) in

 m1 * m2'

This pattern is handled by the MultiplyTranspose method, which not only saves
the time spent in the transpose but also avoids a temporal memory allocation.

These two operation patterns are also detected and implemented with a single
method call:

let m = matrix::random(10);

let v1 = vec::random(10);

let v2 = vec::random(10);

let scaleFactor = 0.1;

MATRICES

79

m * v1 ± v2;

m * v1 ± scaleFactor * v2;

These special operations are implemented by the MultiplyAdd and Multiply-
Subtract group of overloaded methods.

Indexing and slicing
Individual cells are accessed using the row and column inside brackets:

mat[0, 0];

mat[mat.rows - 1, mat.cols - 1]

All indexes start from zero. If the row index is omitted, a whole column is returned:

mat[, 0]

Omitting the column number yields a whole row:

mat[0,];

mat[0]

Carets can also be used in any of the two indexes, to count positions from the end.
For instance, this expression returns the rightmost lower cell of the matrix:

mat[^1, ^1]

Columns and rows can also be extracted as vectors using relative indexes:

mat[, ^2]; -- Next to last column.

mat[^2,] -- Next to last row.

Ranges are accepted for both dimensions, and can be combined with indexes too:

-- Remove last row and last column.

mat[0..^1, 0..^1];

-- Last row without first and last items.

mat[^1, 1..^1]

Eigenvalues Decomposition
An eigenvalue 𝜆 and its associated eigenvector 𝜈 are any pair of values that satisfy
this equation for a square matrix 𝑀:

𝑀𝜈 = 𝜆𝑣

It means that, when the matrix transforms an eigenvector, the result is the same vec-
tor, except for a scale factor.

THE AUSTRA LANGUAGE

80

The Eigenvalue Decomposition of a matrix is an algorithm that identifies all the pairs
of eigenvalues and eigenvector for a given square matrix. You can efficiently find ei-
genvalues and eigenvectors in AUSTRA applying the evd method on a matrix:

let m = matrix::random(10);

let e = mat.evd;

-- This is a matrix with all eigenvectors as columns.

e.vectors;

-- This is a complex vectors with all eigenvalues.

e.values;

-- An alternative representation of eigenvalues, using a real matrix.

e.d

A real matrix can have both real and complex eigenvalues, and that is why the values
property of the decomposition is a complex vector. When there is a complex
eigenvalue, its complex conjugate is also an eigenvalue of the matrix. Aside from
values, the eigenvalues are also returned in a d property, which is a real block
diagonal matrix. Each real eigenvalue is placed in the main diagonal, and complex
eigenvalues are represented as 2x2 blocks in the diagonal.

The best way to visualise how evd returns eigenvalues is to show an example. These
are the eigenvalues of a 4x4 random matrix:

> e.values

ans ∊ ℂ(4)
<2.02631; 0>

<-0.229546; 0.093745>

<-0.229546; -0.093745>

<0.364586; 0>

> e.d

ans ∊ ℝ(4⨯4)
2.02631 0 0 0

 0 -0.229546 0.093745 0

 0 -0.093745 -0.229546 0

 0 0 0 0.364586

The second and third eigenvalues are a conjugated pair of complex numbers. See
how they are represented in the block diagonal matrix, using four cells.

When 𝑚 is a square matrix, the following mathematical equivalence must hold:

𝑚 ∗ 𝑚. 𝑒𝑣𝑑. 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 = 𝑚. 𝑒𝑣𝑑. 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 ∗ 𝑚. 𝑒𝑣𝑑. 𝑑

In practice, however, we must take the loss of precision into account. For verifying
an EVD, you can use this formula in AUSTRA:

let m = matrix::random(32), e = m.evd in

 (m * e.vectors - e.vectors * e.d).amax <= 1e-12;

let lm = matrix::lrandom(32), m = lm * lm', e = m.evd in

 (m * e.vectors - e.vectors * e.d).amax <= 1e-12;

MATRICES

81

Symmetric matrices, as the one generated for the second example above, are decom-
posed using a more efficient algorithm, so Austra checks symmetry first, before ap-
plying any of these algorithms.

LU Factorisation
The LU (lower-upper) factorisation algorithm takes a square matrix and generates a
lower-triangular matrix L and an upper-triangular matrix U that, when multiplied,
regenerates the original matrix. The algorithm may also reorder rows for the sake of
numerical stability.

The lu property, when applied to a square matrix, returns a LU structure from the
Austra library that provides these properties:

det Gets the determinant of the original matrix.

lower Gets the lower-triangular matrix from the factorisation.

perm Gets an integer vector with the permutations.

size Gets the number of rows/columns from the original matrix.

upper Gets the upper-triangular matrix from the factorisation.

More relevant for us are the two overloads of the solve method of this structure:

solve(vec)
solve(matrix)

Solves the equations 𝑀𝑥 = 𝑣 or 𝑀𝑥 = 𝑚, where 𝑀 is the fac-
torised matrix, 𝑣 is a vector and 𝑚 is another matrix.

The solve method from the original matrix does the same work, but it delegates the
solution to a LU factorisation created on the fly. If we need to solve more than one
equation involving the same matrix at the left side, it is more efficient to perform the
LU factorisation once, and reuse the result for each linear system, as this code
shows:

-- This a matrix whose LU factorisation will be reused.

let m = matrix::random(10);

-- The LU factorisation is computed here.

let lu = m.lu;

-- Now we generate a vector and a matrix for the right sides.

let n = matrix::random(m.rows), v = vec::random(m.rows);

-- Solve m*x=n and m*y=v, and check the accuracy of the results.

(m * lu.solve(n) - n).amax;

(m * lu.solve(v) - v).amax;

The accuracy, for the above example, is near 1e-16 or 1e-15.

THE AUSTRA LANGUAGE

82

Cholesky decomposition
Another important factorisation is the Cholesky decomposition. It requires a square
matrix, but this time, the matrix must be a symmetric one. The Cholesky algorithm
finds, for a given 𝑀 matrix, a lower-triangular matrix 𝐶 such that:

𝑀 = 𝐶 ∙ 𝐶′

Of course, matrices generated by multiplying a lower-triangular matrix by its trans-
pose are symmetric, as is easy to demonstrate. Not only that: the resulting matrix
must be a positive-definite matrix, with its determinant greater than zero since the
determinant of a matrix product is the product of the determinants. 𝐶, when exists,
can be considered a sort of square root of the original matrix 𝑀.

A matrix provides two properties related to the Cholesky decomposition. The chol
property returns the lower-triangular matrix when it exists or throws an exception
otherwise. The cholesky property, on the other hand, returns an object that encap-
sulates the Cholesky matrix. The reason for this apparent detour is that the returned
object implements these two overloads of a solve method:

solve(vec)
solve(matrix)

Solves the equations 𝑀𝑥 = 𝑣 or 𝑀𝑥 = 𝑚, where 𝑀 is the fac-
torised matrix, 𝑣 is a vector and 𝑚 is another matrix.

The lower-triangular matrix computed by the decomposition can also be retrieved
from the object return by cholesky using its lower property.

83

List comprehensions
A LIST COMPREHENSION IS a syntactic sugar construct for filter-
ing and mapping sequences, vectors, and series. They sim-
plify writing lambda functions for methods, and they are eas-
ier to read and understand.

Syntax
Suppose you need to write a formula like this one:

seq(1, 100).filter(x => x.odd).map(x => x2)

This code is not a candidate for the Turing Award: it takes the squares of all odd num-
bers between 0 and 100. You had to type two lambda functions, including arrows and
lambda parameters, and you also had to explicitly mention the filter and
the map methods, including the parentheses enclosing their arguments.

This alternative expression does the same, is shorter to type and easier to read:

[x <- seq(1, 100) : x.odd => x2]

With this trick, we have avoided repeating the declaration of the parameter x in the
two lambda definitions used in the expression.

In this example, since the source of all numbers is a range sequence, you could also
use a simpler expression for the range:

[x <- 1..100 : x.odd => x2]

The syntax for this construct can be summarised like this:

[identifier <- generator : filter => mapping]

Both filter and map are optional:

-- This expression...

[x <- 1..100];

-- ... is equivalent to this one:

seq(1, 100)

Types in list comprehensions
The type assigned to the whole list comprehension expression is the same of its gen-
erator. You can keep applying methods or operators to the result:

THE AUSTRA LANGUAGE

84

[x <- 1..100 : x % 2 = 1 => x^2].sortDesc;

[x <- 1..100] .* ([x <- 1..100] + 1)

Special care is needed when the generator is a time series, because the identifier in
the head of the list comprehension is typed as double in the mapping section, but it
is a Point<Date> in the filter section:

let mean = msft.mean in

 [x <- msft : x.date >= jan2015 => x - mean]

Generators
As we have seen, range expressions can be used as generators. We support four var-
iants of range expressions inside list comprehensions:

-- Equivalent to iseq(1, 100)

[x <- 1..100];

-- Equivalent to seq(1, 100)

[x <- 1.0..100.0];

-- Even integers from 0 to 100.

[x <- 0..2..100];

-- The same as seq(0, 1024, 2 * pi)).

[x <- 0..1024..2pi];

In the last example, only the upper bound is real, so the compiler handles the gener-
ator as a real sequence.

The parameter identifier and the membership operator can also be drop, and the
above examples simplify this way:

[1..100];

[1.0..100.0];

[0..2..100];

[0..1024..2pi];

We have mostly used constants for the range generators so far but, of course, each
part of the generator could be an expression:

[x <- pi - 1..32 * 32..sqrt(200)];

Quantifiers in list comprehensions
Logical quantifiers can be used at the beginning of a list comprehension. The allowed
quantifiers are all and any, as the corresponding methods in vectors and se-
quences. They are not keywords, but when used at the beginning of a list compre-
hension, they are considered contextual keywords for syntax highlighting.

This is a very simple example of a quantifier in a list comprehension expression and
its equivalent form using methods:

LIST COMPREHENSIONS

85

[any x <- 10..100 : x * x = x + x];

iseq(10, 100).any(x => x * x = x + x)

Both expressions are compiled as Boolean expressions. Note that a qualified list
comprehension does not allow a mapping section.

The quantified list comprehension is marginally shorter than a call to any or all.
Why, then, do we bother supporting this syntax? The reason is that we can embed a
qualified predicate inside a normal list comprehension:

-- Find all prime numbers between 2 and 100:

[x <- 2..100 : all div <- 2 .. x - 1 : x % div != 0];

-- Equivalent, but longer:

iseq(2, 100).filter(x => iseq(2, x - 1).all(div => x % div != 0))

We need no inner brackets inside the main list comprehension since it is evident how
the qualified condition is nested. We could even add a mapping at the end of the com-
prehension to transform the calculated prime numbers, if required.

If we use regular lambdas, we will be nesting a lambda definition inside another. The
generated code for the list comprehension also uses nested lambdas, but with eas-
ier- to-understand syntax. The inner lambda is "capturing" the parameter of the outer
lambda, so we must be careful when naming local variables.

The mathematical symbols ∀ and ∃ are also accepted as synonyms of all and any:

[∃x <- 10..100 : x * x = x + x];
[x ∈ 2..100 : ∀y ∈ 2..x - 1 : x % y != 0];

These symbols can be typed by pressing CtrlQ+A or CtrlQ+E in the Code Editor.

87

Splines
SPLINES ARE PIECEWISE defined functions using cubic poly-
nomials for interpolating or smoothing curves. Austra can
create splines for time series, using dates as arguments,
or for any pair of vectors containing abscissas and coordi-
nates, respectively. There is also a shortcut for creating
this second kind of splines given a grid on an interval and
an arbitrary function.

Creating splines
All spline kinds are created using overloaded variants of the same class method:

spline::new Creates a spline either from a series, a couple of vectors, or a
grid and a lambda function.

This example shows how to create and use a spline based on a time series:

let s = spline(appl) in

 s[appl.last.date - 15]

The example creates a spline based on the series values, and then the spline is used
to interpolate the value fifteen days before the last date stored in the series.

At a first glance, it may seem than interpolating a daily series does not make sense,
since AUSTRA dates do not include a time fraction. Nevertheless:

• Even daily series have gaps corresponding to holidays.
• You can still use a real value for interpolating a spline with date arguments.

The following formula, for example, finds what would be the value at a middle time
between two consecutive dates:

let s = spline(appl) in

 s[4@jul20.toInt + 0.5]

We are adding half of a day, i.e., twelve hours, to the numerical equivalent of a date,
if the stored values in the time series corresponds to each day’s midnight.

Splines can also be used to interpolate existing data and functions:

-- Use a function over a uniform grid.

let s1 = spline(0, τ, 1024, cos);

s1[π/4] - sqrt(0.5);

s1.derivative(π/4);

THE AUSTRA LANGUAGE

88

-- Use two arbitrary vectors with the same length.

let s2 = spline([1, 3, 4, 5], [0, 1, 0.8, 0]);

s2[2]

Indexers, methods, and properties
All splines have these four properties:

area The total area below the spline.

first The lower bound for the abscissas. It is a date for splines based
on series, and a double value, otherwise.

last The upper bound for the abscissas. It is a date for splines based
on series, and a double value, otherwise.

length Gets the number of polynomials in the spline.

For instance, we can use it to approximate the area below a normal distribution:

-- The integral over a reasonable interval.

spline(-10, 10, 10000, x => exp(-x²)).area;

-- The expected result.

sqrt(π)

 Note

When area is used on a series-based spline, dates are automatically interpreted as
real values, so a day is equal to the unit value.

These are the methods implemented by splines:

derivative Calculates the smoothed derivative at a given point of the spline
range.

poly Gets the cubic polynomial at a given index in the spline.

The poly method has two overloads: one receives an integer, and the other allows a
C# Index as its argument:

-- Let’s define a spline with a function over a uniform grid.

let s1 = spline(0, τ, 1024, cos);

-- Retrieve the polynomial for the first segment of the spline.

s1.poly(0);

-- Two alternatives for retrieving the last polynomial:

s1.poly(s1.length - 1);

s1.poly(^1);

Polynomials retrieved with the poly method accepts values in the closed interval
[0, 1]. The spline interpolator must find the polynomial, subtract the initial argument

SPLINES

89

for the corresponding segment and scale the remaining offset according to the length
covered by the segment. Each polynomial provides two methods, for evaluating its
value and its derivative at a point in the closed interval [0,1], and one property, area,
for evaluating the definitive interval of the polynomial over its valid interval:

area The definite integral over the interval [0,1].

eval Evaluates the polynomial at the given argument.

derivative Gets the derivative of the polynomial.

Interacting with a spline
When a spline is evaluated in the Austra Desktop application, an interactive control
is shown. You can enter values in the Argument text box to evaluate the spline and
its derivative at the supplied argument. This control appears no matter which argu-
ment type is being used for the spline:

For numeric arguments, you can even type an Austra formula in the text box, and
Austra evaluates the formula when Enter is pressed.

91

Models
THE MODEL CLASS IS a general-purpose container for algo-
rithms that do not fit well as members of other classes.
These models are generally shown by the Austra Desk-
top application as interactive controls, allowing users to
explore the whole range of solutions available for each
model.

Mean Variance Optimiser
Mean variance optimisation (MVO) is a mathematical optimisation for maximising
the expected return of a portfolio given a level of risk. Inside a polytope, the funda-
mental algorithm is an optimiser for a quadratic objective function. A polytope is just
a fancy name for a polyhedron in a high-dimensional space.

The MVO is implemented by the MvoModel class from the Austra library, and it is
available for the AUSTRA language by executing the model::mvo class method.

Let us assume we have a portfolio with three assets, and we want to find the three
optimal weights, one for each asset. The most general method overload of the MVO
would be like this:

-- This example assumes we are dealing with three assets.

model::mvo(

 -- A 3D-vector for returns and a 3x3 covariance matrix.

 retVec, covMatrix,

 -- Two 3D-vectors for lower and upper bounds.

 [0, 0, 0], [1, 1, 1],

 -- A label for easy identification of each asset.

 "Name1",

 "Name2",

 "Name3")

• We have purposefully avoided stating any values for the retVec and covMatrix var-
iables. These two variables would contain a vector with the expected return of
each asset and a covariance matrix for these assets.

• It is not obvious how expected returns are to be calculated. Financial series are
seldom stationary, so the expected return would normally depend on time.

• The covariance matrix faces a similar problem.
• The lower and upper bounds, on the contrary, are generally easier to set; they are

just the minimum and maximum weights we desire for each asset in the portfolio.
• The MVO algorithm automatically adds another condition for the weights: their

sum must be equal to one.

For the sake of the example, we are going to assume an arbitrary rentability for each
of our three hypothetical assets. For the covariance matrix, we will make things more

THE AUSTRA LANGUAGE

92

interesting by creating a fake matrix with three of our series exam-
ples: aaa, aab and aad:

> matrix::cov(aaa, aab, aad)

ans ∊ ℝ(3⨯3)
 589666 525180 19023.8

 525180 553027 16232.4

19023.8 16232.4 42045.1

The main diagonal of the above matrix tells us how volatile each of our assets is. We
can see that aaa has the greater variance and that aad has the lesser variance and,
consequently, the lower associated risk. So, we will assume that the first asset pro-
vides the better return, followed by the second and third assets:

model::mvo(

 [1, 0.8, 0.6],

 matrix::cov(aaa, aab, aad),

 [0, 0, 0], [1, 1, 1],

 "Name1", "Name2", "Name3")

If we execute this code, we will get the following interactive output in the area with
results from the Austra Desktop application:

The first part of the output is a table enumerating portfolios from the so-called effi-
cient frontier. There are four such portfolios in our example. The first portfolio max-
imises the expected return, but it is also the one with more volatility, or risk. This
portfolio only includes the first asset; the weight for this asset is one, and the rest of
the weights are zero. The last listed portfolio is the one with the lesser volatility and
return, and it is a mix of the second and third assets. Each portfolio includes a value
for the lambda column, which mathematically is the value of the Lagrange multiplier

MODELS

93

for this solution. From the business point of view, lambda is an indicator of the asso-
ciated risk.

Portfolios in the efficient frontier are important because they represent turning
points in the strategy for changing asset weights. Any portfolio interpolated from two
portfolios on the efficient frontier is a viable solution to our problem. And that is the
mission of the three sliders on the left side of the charts: you can select either a de-
sired return, a standard deviation, or a variance, and the charts will show you which
weights are needed for the selected portfolio. This is what we get if we choose an
expected return of approximately 0.8:

The required portfolio must be a combination of 59% from the first asset and another
41% from the third asset.

More class method overloads
For our example, we chose arbitrary names for the assets that compose our portfo-
lio. When these assets are related to series in our session, it is easier to use the name
of the series for this task:

model::mvo(

 [1, 0.8, 0.6],

 matrix::cov(aaa, aab, aad),

 [0, 0, 0], [1, 1, 1],

 aaa, aab, aad)

Now, the series variables are mentioned twice in the formula. We could change the
formula this way:

model::mvo(

 [1, 0.8, 0.6],

 aaa, aab, aad)

This is the simplest method overload for the MVO. Note that we have also removed
the lower and upper bounds, making the natural assumption that all weights will stay

THE AUSTRA LANGUAGE

94

in the [0,1] interval. We still need, however, to explicitly state the expected returns,
but Austra infers that we want to use the covariance matrix for the three used series.

Additional constraints

Optimisation problems frequently include additional constraints beyond the simple
limits we have shown so far. As a matter of fact, since we have not included a con-
straint for the total sum of weights, the model::mvo method has automatically added
this constraint to the problem:

𝑤𝑎𝑎𝑎 + 𝑤𝑎𝑎𝑏 + 𝑤𝑎𝑎𝑑 = 1

Let’s say we want another constraint. For instance, the first asset’s weight must al-
ways be greater or equal to the third asset's weight:

𝑤𝑎𝑎𝑎 − 𝑤𝑎𝑎𝑑 ≥ 0

The most general form for this kind of constraint is a list of equations following this
pattern:

𝑙𝑖,0𝑤0 + 𝑙𝑖,1𝑤1 + 𝑙𝑖,2𝑤2 ⋈ 𝑟𝑖

Here, 𝑙𝑖,𝑗 stands for left side and 𝑟𝑖 means right side. That strange symbol ⋈ only
means that we can substitute it either with an equality or an inequality. So, more
generally, our additional constraints could always be written as:

𝐿𝑤⃗⃗ ⋈ 𝑟

𝐿 is a matrix with as many columns as assets in the problem and an arbitrary number
of rows, 𝑟 is a vector with the same number of items as rows in the left-side matrix.
Still, we must find a way to determine which relational operator must be used for
each of the constraints.

The MvoModel class provides an overloaded method for adding constraints to an al-
ready existing model:

mvoModel.setConstraints(lhsMatrix, rhsVector, opsIntVector)

The first parameter must be a matrix; the second parameter must be a real vector;
and the third parameter must be an integer vector. Items in the third parameter are
interpreted according to their signs. A positive value means a greater or equal oper-
ation; a negative value stands for a lesser or equal relationship; and zero means
equality. The third parameter can be omitted when all constraints are equality con-
straints.

This way, if we want to combine the sum-of-weights constraint with our additional
constraint, we will need the following code:

MODELS

95

model::mvo(

 [1, 0.8, 0.6],

 aaa, aab, aad).setConstraints(

 [1, 1, 1; 1, 0, -1], [1, 0], [int:0, 1])

These are the portfolios from the efficient frontier, with the additional constraint:

We could even drop the first constraint because the optimiser will add it when it is
not present:

model::mvo(

 [1, 0.8, 0.6],

 aaa, aab, aad).setConstraints(

 [1; 0; -1]’, [0], [int:1])

Please note the trick we need to create a matrix literal with only one row; we wrote
it as a one-column matrix and then transposed it. This is a valid alternative:

model::mvo(

 [1, 0.8, 0.6],

 aaa, aab, aad).setConstraints(

 matrix::rows([1, 0, -1]), [0], [int:1])

Linear Programming
The model class also provides a simplex method for solving linear programming
problems. In a typical linear programming problem, we must maximize the value of
a linear function like this:

40𝑥1 + 30𝑥2

All variables are implicitly considered non-negative, and some additional constraints
must be satisfied:

𝑥1 + 𝑥2 ≤ 12
2𝑥1 + 𝑥2 ≤ 16

This problem can be solved using this code:

model::simplex([40, 30], [1, 1; 2, 1], [12, 16], [int: -1, -1])

The first parameter contains the coefficients from the objective function. The second
parameter is a matrix with the left-hand side coefficients of the constraints, and the
third parameter is the right-hand side of the constraint as a vector. Finally, the last

THE AUSTRA LANGUAGE

96

parameter contains the relational operators for each constraint. Since all constraints
have the same sign, we can simplify the code like this:

model::simplex([40, 30], [1, 1; 2, 1], [12, 16], -1)

In both cases, the answer is a SimplexModel object that contains the optimal value
and the coefficients for the optimal solution:

> model::simplex([40, 30], [1, 1; 2, 1], [12, 16], [int: -1, -1])

LP Model (2 variables)

Value: 400

Weights:

 4 8

This method always assumes that we want to maximise the value of the objective
function. If you want to minimise the objective function, you could invert the sign of
the coefficients:

model::simplex(-[12, 16], [1, 2; 1, 1], [40, 30], +1)

Note, however, that doing by this, you will get a negated value for the solution.

LP Model (2 variables)

Value: -400

Weights:

 20 10

You can fix this problem by using simplexMin instead and using the original coeffi-
cients in the objective function:

model::simplexMin([12, 16], [1, 2; 1, 1], [40, 30], +1)

97

Index

A

accumulators, 44
all, 31
any, 31
arrays, 5
autocorrelation, 38, 39, 40, 46, 55
autoregressive model, 47

B

beta, 16, 26
bool, 20

C

Cholesky, 82
comments, 8
comparisons, 14
complex

conjugation, 15
imaginary unit, 7
vector, 57

conditionals, 20

D

date, 19
operators, 20

DC, 63
definitions, 23

functions, 25

E

elif, 20
erf, 16, 26
evd, 79
ewma, 40

F

Fast Fourier Transform, 62
inverse, 63
Wiener-Khinchin theorem, 46

fft, 62
Fibonacci, 62
functions

definition, 25
description, 26
local, 30

G

gamma, 16
goodness of fit, 43, 49

I

if, 20
integer

sequences, 69
vector, 59
vector literals, 60

L

lambdas, 31
nested, 34
parameters, 26

let, 29
script-scoped, 29

linear model, 43
linearFit, 41
list comprehensions, 83

quantifiers, 84

M

map, 31
matrix, 75

cholesky, 82
concatenation, 75
evd, 79
literals, 75
LU factorisation, 81
optimisations, 78
transpose, 78

Mean Variance Optimiser, 3, 91
additional constraints, 94

membership, 14
models

AR, 40, 56, 65
linearModel, 40, 56
MA, 40, 56, 65
simplex, 95

THE AUSTRA LANGUAGE

98

simplexMin, 96
moving average model, 49

N

ncdf, 33
Newton-Raphson, 18
nrandom, 17

O

operators, 13
complex conjugation, 15
date, 20
matrix transpose, 78

P

partial autocorrelation, 47
polynomials, 18

derivative, 19
splines, 88, 89

probit, 17

Q

quantifiers, 84

R

r2, 43, 49
random, 18
ranges, 14

S

sequences, 65
unfold, 71
until, 71

while, 67
series

ewma, 40
fit, 41
frequency, 37

set, 10
simplex, 95
splines, 87

area, 88
derivative, 88, 89
interacting with, 89

T

type
names, 26

U

undef, 23
unfold, 66, 71
until, 71

V

vectors, 53
autocorrelation, 55
complex, 57
concatenation, 53
integer, 59
literals, 53, 60
optimisations, 54, 78
safe indexers, 62
slices, 61

W

while, 67

